Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^2 - 3x + 2 = 0
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)
=> pt có 2 nghiệm pb
\(x_1=\frac{-\left(-3\right)+1}{2}=2\)
\(x_2=\frac{-\left(-3\right)-1}{2}=1\)
a) Dễ thấy phương trình có a + b + c = 0
nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2
b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)
Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3
Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2
Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )
a.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
b.
ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)
Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:
\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)
\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)
Thay xuống pt dưới:
\(6y+y=14\Rightarrow y=2\)
\(\Rightarrow x=4\)
sao khó vậy,mình học lớp 9 mà tính mãi chẳng ra đáp án bài này từ lâu rùi
Bài 1 :
\(2+\sqrt{9}=2+3=5\)
Bài 2 :
Với \(x\ge0\)
\(B=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}+7}\right):\frac{5}{\sqrt{x}+7}\)
\(=\frac{\sqrt{x}+7-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}:\frac{5}{\sqrt{x}+7}\)
\(=\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}.\frac{\sqrt{x}+7}{5}=\frac{1}{\sqrt{x}+2}\)
Bài 3 :
\(\hept{\begin{cases}x+2y=4\left(1\right)\\x-2y=0\left(2\right)\end{cases}}\)Lấy (1) - (2) ta được :
\(4y=4\Leftrightarrow y=1\)
Thay y = 1 vào (1) ta được : \(x+2=4\Leftrightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
Bài 2 :
\(\hept{\begin{cases}3x+2y=11\left(1\right)\\x+2y=5\left(2\right)\end{cases}}\)
Lấy phương trình (1) - phương trình (2) ta được :
\(2x=6\Leftrightarrow x=3\)
Thay x = 3 vào phương trình (2) ta được :
\(3+2y=5\Leftrightarrow2y=2\Leftrightarrow y=1\)
Vậy \(\left(x;y\right)=\left(3;1\right)\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)
b: \(\dfrac{3}{2}< >\dfrac{2}{-3}\)
nên hệ có 1 nghiệm duy nhất
c: 3/2<>0/1
nên hệ có 1 nghiệmduy nhất
d: 0/1<>-1/-1
nên hệ có 1 nghiệm duy nhất
e: 1/2=2/4<>3/1
nên hệ ko có nghiệm
f: 1:1/2=1:1/2=1:1/2
nên hệ có vô số nghiệm
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}9x-3y=-12\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=-11\\y=3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm
a) (3x - 2)(2x + 1) = 0
3x - 2 = 0 hoặc 2x + 1 = 0
*) 3x - 2 = 0
3x = 2
*) 2x + 1 = 0
2x = -1
Vậy:
b) 2x - y = 4
y = 2x - 4 (1)
x + 2y = -3 (2)
Thế (1) vào (2), ta được:
x + 2.(2x - 4) = -3
x + 4x - 8 = -3
5x = -3 + 8
5x = 5
x = 1
Thế x = 1 vào (1), ta được:
y = 2.1 - 4
y = -2
Vậy S = {(1; -2)}