Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)
\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)
\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)
1/1*2+1/2*3+1/3*4+...+1/9*10
=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
nho k cho minh voi nhe
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ......... + \(\frac{1}{7.8}\)+ \(\frac{1}{8.9}\)+ \(\frac{1}{9.10}\)
\(=\)\(1\)\(-\)\(\frac{1}{10}\)
\(=\)\(\frac{9}{10}\)
1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
=1/1-1/2+1/2-1/3+...-1/7
=1+(1/2-1/2+1/3-1/3+...+1/6-1/6)-1/7
=1 +0+0+...-1/7
=1-1/7
=6/7
Đặt A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}+1\)
=> A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{999}-\frac{1}{1000}+1\)
=> A = \(1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)
Ta có:
1/1x2=1-1/2
Cách này em có thể tự chứng minh bằng quy đồng mẫu.
Cứ như vậy....
Sau đó ta sẽ có tổng xuất hiện những số đối nhau,khử đi ta còn:
1-1/1000+1
=-1/1000.
Chúc em học tốt^^
Ta có:
1/1x2=1-1/2
Cách này em có thể tự chứng minh bằng quy đồng mẫu.
Cứ như vậy.
Sau đó ta sẽ có tổng xuất hiện những số đối nhau,khử đi ta còn:
=1-1/1000+1
=- 1/1000.
Chúc em học tốt^^
=1 - 1/2 + 1/2 - 1/3 + ...... +1/999 - 1/1000
=1-1/1000
=999/1000
=1 - 1/2 + 1/2 - 1/3 + ...... +1/999 - 1/1000
=1-1/1000
=999/1000
1 /1x2 + 1/2x3 + 1/3x4 + ...+ 1/999x1000 + 1
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/999 - 1/1000 + 1
= 1/1 - 1/1000 + 1
= 999/1000 + 1
= 1999/1000
= 1,999
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
chúc bn học tốt
\(1,27+2,77+4,27+5,77+...+31,27+32,47\)
\(=\left(1,27+32,77\right)+\left(2,77+31,27\right)+....+\left(16,27+17,77\right)\)
\(=34,04+34,04+....+34,04\)( 11 số hạng)
\(=34,04.11=374,44\)
chúc bn học tốt
a) \(\left(x-25\right):15=20\)
\(\Rightarrow x-25=20\times15\)
\(\Rightarrow x-25=300\)
\(\Rightarrow x=300+25\)
\(\Rightarrow x=325\)
Vậy x = 325
b) \(3\times x-25=80\)
\(\Rightarrow3\times x=80+25\)
\(\Rightarrow3\times x=105\)
\(\Rightarrow x=105:3\)
\(\Rightarrow x=35\)
Vậy x = 35
c) \(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{2}-\frac{1}{100}\)
\(S=\frac{49}{100}\)
Vậy \(S=\frac{49}{100}\)
_Chúc bạn học tốt_
`A = 1/(2 \times 3) + 1/(3\times4)+...+1/(7\times8)`
`= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - ... - 1/7 + 1/7 - 1/8`
`= 1/2 - 1/8`
`= 4/8 - 1/8`
`= 3/8`
Vậy: `A=3/8`
\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}\\ =\dfrac{3-2}{2\cdot3}+\dfrac{4-3}{3\cdot4}+\dfrac{5-4}{4\cdot5}+\dfrac{6-5}{5\cdot6}+\dfrac{7-6}{6\cdot7}+\dfrac{8-7}{7\cdot8}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\\ =\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{4}{8}-\dfrac{1}{8}=\dfrac{3}{8}\)