Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ∠A + ∠B + ∠C = 180 0
⇒ ∠A = 180 0 - ∠B - ∠C = 180 0 - 65 0 - 45 0 = 70 0
Kẻ đường cao AH
Xét tam giác ABH vuông tại H có:
AH = AB.sin B = 2,8.sin 65o ≈ 2,54 cm
BH = AB.cos 65o = 2,8.cos 65o ≈ 1,18 cm
Xét tam giác AHC vuông tại H có:
HC = AH.cotg C = 2,54.cotg 45 0 ≈ 2,54 cm
Ta có: BC = BH + HC = 1,18 + 2,54 = 3,72 cm
Vậy ∠A = 70 0 ; AC = 3,59 cm; BC= 3,72 cm
Kẻ ah vuông góc với BC suy ra AH=1/2AB=4cm,BH=√3/2AB=4√3cm(dùng sin,cos nhé)
Mà HC^2=AC^2-AH^2>>>Tính được AC.
Tính ra AC tính được các góc bằng sin,cos
\(\dfrac{B}{C}=\dfrac{4}{3}\Rightarrow B=\dfrac{4C}{3}\)
\(B+C=180^0-A=105^0\Rightarrow C+\dfrac{4C}{3}=105^0\Rightarrow C=45^0\) \(\Rightarrow B=60^0\)
Kẻ đường cao AD ứng với BC (do 2 góc B và C đều nhọn nên D nằm giữa B và C)
Trong tam giác vuông ABD:
\(sinB=\dfrac{AD}{AB}\Rightarrow AD=AB.sinB=10,6.sin60^0\approx9,2\left(cm\right)\)
\(cosB=\dfrac{BD}{AB}\Rightarrow BD=AB.cosB=10,6.cos60^0=5,3\left(cm\right)\)
Trong tam giác vuông ACD:
\(tanC=\dfrac{AD}{CD}\Rightarrow CD=AD.tanC=9,2.tan45^0=9,2\left(cm\right)\)
\(sinC=\dfrac{AD}{AC}\Rightarrow AC=\dfrac{AD}{sinC}=\dfrac{9,2}{sin45^0}\approx13\left(cm\right)\)
\(BC=BD+CD=5,3+9,2=14,5\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.9,2.14,5=66,7\left(cm^2\right)\)
Hình vẽ chỉ mang tính chất minh hoạ thôi nha bạn.
Trên tia đối của AB lấy điểm D sao cho \(BD\text{=}BC\)
Do đó :
Ta có : tam giác BDC cân tại B
\(AD\text{=}DB+AB\text{=}BC+AB\text{=}3AB\)
\(\Rightarrow\widehat{ABC}\text{=}\widehat{BDC}+\widehat{BCD}\text{=}2\widehat{BCD}\)
Mà : \(\widehat{B}\text{=}2\widehat{C}\) nên \(\widehat{B}\text{=}\widehat{DCA}\)
Xét \(\Delta BAC\) và \(\Delta CAD\) có :
\(\widehat{A}:gócchung\)
\(\widehat{B}\text{=}\widehat{ACD}\left(cmt\right)\)
\(\Rightarrow\Delta BAC\sim\Delta CAD\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{AC}\text{=}\dfrac{AC}{AD}\) \(\Rightarrow AC^2\text{=}AB.AD\)
Mà \(AD\text{=}3AB\) \(\Rightarrow AC^2\text{=}3AB^2\)
Ta có : \(BC^2\text{=}4AB^2\)
Xét tam giác ABC có : \(AB^2+AC^2\text{=}AB^2+3AB^2\text{=}4AB^2\text{=}BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
Kết hợp với gt của đề bài : \(\Rightarrow\widehat{A}\text{=}90^o;\widehat{C}\text{=}30^o;\widehat{B}\text{=}60^o\).
Trên BC lấy I sao cho IC=IB
Ta có AM=MC=AC/2=20/2= 10 cm
Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm
Áp dụng Pytago trong tam giác vuông AMH: AH2= AM2 - MH2 = 102 - 82= 36 ----> AH=6 cm
có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)
Từ I kẻ IK vuông góc AB
có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB)
---> MIKH là hình bình hành
---> MI=HK=12 cm; MH=IK=8 cm
BK= AB-AH-HK = 24-6-12=6 cm
Xét tam giác AMH và tam giác BIK:
AH=BK=6
góc AHM= góc BKI= 90O
MH=IK=8
----> tam giác AMH=tam giác BIK(c.g.c)
----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA
----> tam giác ABC cân tại C
b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)
----> AM=MC=IB=IC=10 cm
Kéo dài CO cắt AB tại D
tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O
có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o
Tương tự với tam giác OCB được OI vuông góc BC hay góc OIC=90o
Xét tam giác vuông OMC và tam giác vuông OIC:
MC=IC=10cm
OC cạnh chung
--->tam giác OMC = tam giác OIC (ch.cgv)
--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->
CD vuông góc AB hay góc ADC=90oAD=BD=AB/2 = 12 cm
Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256 ---> CD=16 cm
Đặt OC=OA=X --> OD= CD-OC = 16 - X
Theo Pytago tam giác AOD: AO2= OD2+AD2
<-->X2= (16-X)2 + 122
<--> 162 -32X + X2 +122 - X2=0
<--> 400 - 32X=0
<--> X= -400/-32= 12,5 cm
Vậy bán kính đường tròn bằng 12,5 cm
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}=53^0\)
=>\(\widehat{C}=37^0\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8(cm)
a. Ta có: AB2 = 62 = 36
AC2 = 4,52 = 20,25
BC2 = 7,52 = 56,25
Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)
Kẻ AH ⊥ BC
Ta có: AH.BC = AB.AC
b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{A}=180^0-65^0-45^0=70^0\)
Xét ΔABC có \(\dfrac{AB}{sinC}=\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)
=>\(\dfrac{BC}{sin70}=\dfrac{AC}{sin65}=\dfrac{2.8}{sin45}\)
=>\(\left\{{}\begin{matrix}BC=2.8\cdot\dfrac{sin70}{sin45}\simeq3,72\left(cm\right)\\AC=2.8\cdot\dfrac{sin65}{sin45}\simeq3,59\left(cm\right)\end{matrix}\right.\)
BC\(\approx\)3,72
AC\(\approx\)3,59