K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

Kẻ ah vuông góc với BC suy ra AH=1/2AB=4cm,BH=√3/2AB=4√3cm(dùng sin,cos nhé)

Mà HC^2=AC^2-AH^2>>>Tính được AC.

Tính ra AC tính được các góc bằng sin,cos

9 tháng 6 2019

giúp vs ạ

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)

hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)

1 tháng 12 2021

Câu 4:

\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)

3 tháng 12 2021

Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)

\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)

1 tháng 10 2023

Theo định lý sin ta có:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)

Mà: ΔAEC vuông tại E ta có:

\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)

ΔABD vuông tại D nên ta có:

\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)

Theo định lý sin ta có:

\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)

\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)

1 tháng 10 2023

hình ạ

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+18^2=765\)

hay \(BC=3\sqrt{85}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{21}{3\sqrt{85}}\)

\(\Leftrightarrow\widehat{ACB}\simeq49^0\)

\(\Leftrightarrow\widehat{ABC}=41^0\)

31 tháng 7 2021

sau sin ko cần viết kí hiệu góc đâu anh

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+18^2=765\)

hay \(BC=3\sqrt{85}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{21}{3\sqrt{85}}\)

nên \(\widehat{C}\simeq49^0\)

\(\Leftrightarrow\widehat{B}=41^0\)