Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2000.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)=2000.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
\(=2000.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)=2000.\left(1-\frac{1}{100}\right)=20.99=1980\)
\(\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)...\left(1-\frac{2}{9900}\right)\)
\(=\frac{4}{6}.\frac{10}{12}...\frac{9898}{9900}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{98.101}{99.100}\)
\(=\frac{1.2...98}{3.4...100}.\frac{4.5...101}{2.3...99}\)
\(=\frac{2}{99.100}.\frac{100.101}{2.3}\)
\(=\frac{101}{99.3}\)
\(=\frac{101}{297}\)
dãy số 2, 6, 12, 20...9900 tách ra thành 1.2, 2.3, 3.4, 4.5,..., 99.100
nghĩa là mình có công thức ∑ (i=1 -> 99) (2010) / (99.(99+1))
(2010). ∑(i=1 -> 99) (99/100)
2010 . (99/100) = 1989,9
tick nha
1/1x2+1/2x3+1/3x4+...+1/99x100+1/100x101
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100+1/100-1/101
=1/1-1/101
=100/101
Ta thấy đc quy luật:
\(\frac{2^2-1^2}{2^2}=\frac{2+1}{2+2}=\frac{3}{4}\)
\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}=\frac{6+2}{6+3}=\frac{8}{9}\)
\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}+\frac{4^2-3^2}{12^2}=\frac{12+3}{12+4}=\frac{15}{16}\)
Nên:
\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}+\frac{4^2-3^2}{12^2}+...+\frac{100^2-99^2}{9900^2}=\frac{9900+99}{9900+100}=\frac{9999}{10000}\)
Hay A<1(đpcm)
a=\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99.100}\)
a=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
a=\(1-\frac{1}{100}\)
a=\(\frac{99}{100}\)
A = \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
A = \(\frac{1}{1}-\frac{1}{100}\)
A = \(\frac{99}{100}\)
Vậy A = \(\frac{99}{100}\)
Hok tốt
\(2+4+6+...+2n=9900\)
\(2.\left(1+2+3+...+n\right)=9900\)
\(1+2+3+...+n=4950\)
\(\dfrac{n\left(n+1\right)}{2}=4950\)
\(n\left(n+1\right)=9900\)
\(n\left(n+1\right)=99.\left(99+1\right)\)
\(n=99\)
2 + 4 + 6 + 8 + ... + 2n = 9900
2.(1 + 2 + 3+ 4+ ...+n) = 9900
1 + 2 + 3 + 4+ ... + n = 9900 : 2
1 + 2 + 3 + 4+ ... + n = 4950
(n + 1)n: 2 = 4950
(n + 1)n = 4950.2
(n + 1).n = 9900
(n + 1)n = 99.100
n = 99
Vậy n = 99