Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a: Xét tứ giác ANDM có
\(\widehat{AND}=\widehat{AMD}=\widehat{MAN}=90^0\)
=>ANDM là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của CB
DN//AB
Do đó: N là trung điểm của AC
Xét tứ giác ADCEcó
N là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có AC\(\perp\)DE
nên ADCE là hình thoi
c:
Xét ΔABC có
D là trung điểm của BC
DM//AC
Do đó: M là trung điểm của AB
Để AMDN là hình vuông thì AM=AN
mà \(AM=\dfrac{AB}{2};AN=\dfrac{AC}{2}\)
nên AB=AC
a; DN\(\perp\)AC
AB\(\perp\)AC
Do đó: DN//AB
=>DN//MB
Xét tứ giác BMND có
BM//DN
BD//MN
Do đó: BMND là hình bình hành
b: Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>\(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
a: Ta có: \(\widehat{BIH}+\widehat{IBH}=90^0\)
mà \(\widehat{AID}=\widehat{BIH}\)
nên \(\widehat{AID}+\widehat{DBC}=90^0\)
mà \(\widehat{ADI}+\widehat{ABD}=90^0\)
và \(\widehat{DBC}=\widehat{ABD}\)
nên \(\widehat{AID}=\widehat{ADI}\)
hay ΔAID cân tại I
hong b =)