K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8

Do \(2011\) chia 3 dư 1

\(\Rightarrow2011^n\) chia 3 dư 1 với mọi n tự nhiên

\(\Rightarrow2011^n+2\) chia hết cho 3 với mọi n tự nhiên

\(\Rightarrow\left(2011^n+1\right)\left(2011^n+2\right)\) chia hết cho 3 với mọi n tự nhiên

6 tháng 8

hình như chia 3 nó dư 2 mà bạn

5 tháng 1 2017

Có 3^n+2 - 2^n+2 + 3^n - 2^n

=3^2 * 3^n+3^n-(2^n*2^2+2^n)

=3^n(9+1)-2^n*(4+1)

=3^n*10-2^n*5

Vì 3^n*10 chia hết cho 10; 2^n là số chẵn nên 2^n *5 có tận cùng là 0 nên chia hết cho 10.

Mà hiệu của 2 số chia hết cho 10 là 1 số chia hết cho 10

nên 3^n+2-2^n+2+3^n - 2^n chia hết cho 10

11 tháng 12 2016

Bài này giải được 1 tháng VIP đấy, vì đây là câu hỏi của Toán vui hằng tuần

21 tháng 2 2016

Sonny nha, em mới học lớp 5

NV
2 tháng 4 2019

\(f\left(0\right)=c\)\(f\left(0\right)⋮2011\Rightarrow c⋮2011\)

\(f\left(1\right)⋮2011\Rightarrow a+b+c⋮2011\Rightarrow a+b⋮2011\)

\(f\left(-1\right)⋮2011\Rightarrow a-b+c⋮2011\Rightarrow a-b⋮2011\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)⋮2011\Rightarrow2a⋮2011\)

Mà 2 và 2011 nguyên tố cùng nhau \(\Rightarrow a⋮2011\)

\(\left\{{}\begin{matrix}a⋮2011\\a+b⋮2011\end{matrix}\right.\) \(\Rightarrow b⋮2011\)

3 tháng 10 2016

Ta có :

\(n^2+n+2=n\left(n+1\right)+2\)

Vì tích 2 số tự nhiên liên tiếp chỉ có thể có tận cùng là 0 ; 2 ; 6

=> n(n+1)+2 chỉ có thể có tận cùng là 2 ; 4 ; 8 

=> n ( n +1 ) + 2 không chia hết cho 5

=> n(n+1)+2 không chia hết cho 15

3 tháng 10 2016

cảm ơn bạn nhé!

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}