K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7

\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)=15\\ \Leftrightarrow\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]=15\\ \Leftrightarrow\left(x^2-7x+10\right)\left(x^2-7x+12\right)=15\\ \Leftrightarrow\left[\left(x^2-7x+11\right)-1\right]\left[\left(x^2-7x+11\right)+1\right]=15\\ \Leftrightarrow\left(x^2-7x+11\right)^2-1=15\\ \Leftrightarrow\left(x^2-7x+11\right)^2=16=4^2\\ \Leftrightarrow\left(x^2-7x+11\right)^2-4^2=0\\ \Leftrightarrow\left(x^2-7x+11-4\right)\left(x^2-7x+11+4\right)=0\\ \Leftrightarrow\left(x^2-7x+7\right)\left(x^2-7x+15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-7x+7=0\\x^2-7x+15=0\end{matrix}\right.\)

Đến đây bn giải delta ra từng trường hợp nhé 

\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)=15\)

=>\(\left(x^2-7x+10\right)\left(x^2-7x+12\right)-15=0\)

=>\(\left(x^2-7x\right)^2+22\left(x^2-7x\right)+120-15=0\)

=>\(\left(x^2-7x\right)^2+22\left(x^2-7x\right)+105=0\)

=>\(\left(x^2-7x+7\right)\left(x^2-7x+15\right)=0\)

mà \(x^2-7x+15=\left(x-\dfrac{7}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)

nên \(x^2-7x+7=0\)

=>\(x=\dfrac{7\pm\sqrt{21}}{2}\)

a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)

14 tháng 5 2021

`1)(x+2)(x+3)(x-7)(x-8)=144`
`<=>[(x+2)(x-7)][(x+3)(x-8)]=144`
`<=>(x^2-5x-14)(x^2-5x-24)=144`
`<=>(x^2-5x-19)^2-25=144`
`<=>(x^2-5x-19)^2-169=0`
`<=>(x^2-5x-6)(x^2-5x-32)=0`
`+)x^2-5x-6=0`
`<=>` $\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.$
`+)x^2-5x-32=0`
`<=>` $\left[ \begin{array}{l}x=\dfrac{5+3\sqrt{17}}{2}\\x=\dfrac{5-3\sqrt{17}}{2}\end{array} \right.$
Vậy `S={-1,6,\frac{5+3\sqrt{17}}{2},\frac{5-3\sqrt{17}}{2}}`

1: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)=144\)

\(\Leftrightarrow\left(x^2-7x+2x-14\right)\left(x^2-8x+3x-24\right)=144\)

\(\Leftrightarrow\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+336-144=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+192=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2-6\left(x^2-5x\right)-32\left(x^2-5x\right)+192=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x-6\right)-32\left(x^2-5x-6\right)=0\)

\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x-32\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+1\right)\left(x^2-5x-32\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+1=0\\x^2-5x-32=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\\x=\dfrac{5-3\sqrt{17}}{2}\\x=\dfrac{5+3\sqrt{17}}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{6;-1;\dfrac{5-3\sqrt{17}}{2};\dfrac{5+3\sqrt{17}}{2}\right\}\)

28 tháng 9 2021

h) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{3}{x}-\dfrac{4}{y}=-1\end{matrix}\right.\)\(\left(1\right)\)\(\left(đk:x,y\ne0\right)\)

Đặt \(a=\dfrac{1}{x},b=\dfrac{1}{y}\)

\(\left(1\right)\Leftrightarrow\) \(\left\{{}\begin{matrix}a+b=2\\3a-4b=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6\\3a-4b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\7b=7\end{matrix}\right.\)\(\Leftrightarrow a=b=1\)

Thay a,b:

\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{y}=1\Leftrightarrow x=y=1\left(tm\right)\)

a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)

=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)

b: =>(x-căn 15)^2=0

=>x-căn 15=0

=>x=căn 15