Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) \(A=\left(4-\sqrt{15}\right)\left(\sqrt{10}+\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\sqrt{\left(4-\sqrt{15}\right)\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}.\left(\sqrt{5}+\sqrt{3}\right).\sqrt{2}=\sqrt{\left(4-\sqrt{15}\right).\left(16-15\right).2}.\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{8-2\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{5-2\sqrt{5}.\sqrt{3}+3}.\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}.\left(\sqrt{5}+\sqrt{3}\right)=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)
Ta có công thức tổng quát\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)
Vậy \(B=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{15}+\sqrt{16}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{16}-\sqrt{15}=\sqrt{16}-\sqrt{1}=4-1=3\)
b) \(6x^4-7x^2-3=0\Leftrightarrow6x^4-9x^2+2x^2-3=0\Leftrightarrow3x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\Leftrightarrow\left(2x^2-3\right)\left(3x^2+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}2x^2-3=0\\3x^2+1=0\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(2x^2-3=0\Leftrightarrow2x^2=3\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\frac{\pm\sqrt{6}}{2}\)
Vậy S={\(\frac{-\sqrt{6}}{2};\frac{\sqrt{6}}{2}\)}
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
c, ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Leftrightarrow\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}-1=2\\\sqrt{2x-1}-1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}=3\\\sqrt{2x-1}=-1\left(vn\right)\end{matrix}\right.\)
\(\sqrt{2x-1}=3\Leftrightarrow2x-1=9\Leftrightarrow x=5\left(tm\right)\)
a, ĐKXĐ: \(x\in R\)
\(\sqrt{3x^2}=x+2\)
\(\Leftrightarrow\sqrt{3}\left|x\right|=x+2\)
TH1: \(\sqrt{3}x=x+2\)
\(\Leftrightarrow\left(\sqrt{3}-1\right)x=2\)
\(\Leftrightarrow x=\sqrt{3}+1\)
TH2: \(\sqrt{3}x=-x-2\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)x=-2\)
\(\Leftrightarrow x=1-\sqrt{3}\)
Câu 1) x\(^2\) - 5 = 0
\(\Leftrightarrow\)(x - \(\sqrt{5}\))(x + \(\sqrt{5}\)) = 0
\(\Leftrightarrow\)x = \(\sqrt{5}\) hoặc
x = -\(\sqrt{5}\)
Câu 2) x\(^2\) - \(2\sqrt{13}x\) +13 = 0
\(\Leftrightarrow\)(x - \(\sqrt{13}\))\(^2\) = 0
\(\Leftrightarrow\)x - \(\sqrt{13}\) = 0
\(\Leftrightarrow\)x = \(\sqrt{13}\)
Câu 3) \(\left(x+2\right)\sqrt{x-3}=0\)
\(\Leftrightarrow x=-2\) hoặc
\(x=3\)
Câu 4) Tới lúc này mình hơi lười nên bạn tự giải phương trình nhé.
Hướng dẫn: Ta biết nếu\(\sqrt{x}\) = a với a\(\ge\) 0 thì x= a\(^2\), nên ta đưa về tìm x thỏa mãn (x + \(\sqrt{x-2}\))\(^2\) = 4(x-1)
Giải phương trình này ta có x=2.
Câu 5)\(\sqrt{9-12x+4x^2}=4\)
\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4\)
\(\Leftrightarrow\left|3-2x\right|=4\)
\(\Leftrightarrow3-2x=4\) hoặc
-3 + 2x = 4
\(\Leftrightarrow\) x= -0.5 hoặc x= 3.5
a: \(\Leftrightarrow5\sqrt{x+3}-4\sqrt{x+3}=3\sqrt{x-2}-3\sqrt{x-2}+2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
=>x+3=4
hay x=1
c: \(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)
\(\Leftrightarrow\left(x^2+4x\right)^2-5\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow\left(x^2+4x\right)^2-12\left(x^2+4x\right)+7\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow x^2+4x-12=0\)
=>(x+6)(x-2)=0
=>x=-6 hoặc x=2
ĐKXĐ: x\(\ge0\)
a/ \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)=x-17\)
\(\Leftrightarrow x-2\sqrt{x}-15=x-17\)
\(\Leftrightarrow-2\sqrt{x}=-2\Leftrightarrow x=1\)
b/ \(\frac{6-2\sqrt{x}+5}{6}=\frac{3-\sqrt{x}}{4}\)
\(\Leftrightarrow22-4\sqrt{x}=9-3\sqrt{x}\)
\(\Leftrightarrow x=169\)
c/ \(\Leftrightarrow x+6\sqrt{x}+9-x+3=0\)
\(\Leftrightarrow x=6\sqrt{x}=-12\) (vô lí)
Vây...
\(a,\sqrt{25x^2}=10\)
\(\sqrt{\left(5x\right)^2}=10\)
\(5x=10\)
\(x=2\)
b. <=> \(\sqrt{4\left(x^2-1\right)}=2\sqrt{15}\) ĐKXĐ: x>=1,x>=-1
<=> \(4\left(x^2-1\right)=60\Leftrightarrow x^2-1=15\Leftrightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)
<=>x=+-4
a) Đặt \(x^2+3x+1=y\)
=> y(y+1) - 6 = 0
=> \(y^2+y-6=0\)
=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)
Với y = 2 ta có:
\(x^2+3x+1=2\)
=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)
Với y = -3 ta có:
\(x^2+3x+1=-3\)
=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Có j không hiểu có thể hỏi lại mk
Chúc bạn làm bài tốt
b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)
\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)
\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)
\(\Leftrightarrow x^2=x^2+x-6\)
\(\Leftrightarrow x-6=0\)
\(\Leftrightarrow x=6\)
7/
ĐKXĐ: \(-3\le x\le\frac{2}{3}\)
\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)
\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)
\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)
Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)
\(\Rightarrow4-\sqrt{3-2x}>0\)
\(\Rightarrow VT>0\)
Phương trình vô nghiệm (bạn coi lại đề)
5/
\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)
6/
ĐKXĐ: ....
\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)
a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)
=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)
b: =>(x-căn 15)^2=0
=>x-căn 15=0
=>x=căn 15