Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3^2+(6^2+9^2+....+39^2)
= 10 + 3^2.(2^2+3^2+....+13^2) = 10 + 9. 818 = 7372
Ta có: \(\frac{x+1}{x}=\pm1+\frac{1}{x}\)
Ta thấy: \(\pm1+\frac{1}{x}\) lớn nhất
\(\Leftrightarrow\frac{1}{x}\) lớn nhất
\(\Leftrightarrow\) x nhỏ nhất
\(\Leftrightarrow x=\pm1\)
*Chú ý: Có những chỗ phải viết kí hiệu của giá trị tuyệt đối nhưng mình không viết được. Bạn tự hiểu nhé!
Mong bạn thông cảm và chúc bạn học giỏi!
(Nếu a và b song song hình ko cho song song nha e )
Ta có : \(\widehat{A_4}=\widehat{B_2}\)( 2 góc sole trong )
Mà \(\widehat{A_4}=\widehat{A_2}\)( 2 góc đối đỉnh ) ; \(\widehat{B_2}=\widehat{B_4}\)( 2 góc đối đỉnh )
=> \(\widehat{B_4}=\widehat{A_2}\)
mod là viết tắt của dạng toán modulo của điện toán
Trong điện toán, phép toán modulo là phép toán tìm số dư của phép chia 2 số (đôi khi được gọi là modulus).
Cho hai số dương, (số bị chia) a và (số chia) n, a modulo n (viết tắt là a mod n) là số dư của phép chia có dư Euclid của a cho n. Ví dụ, biểu thức "5 mod 2" bằng 1 vì 5 chia cho 2 có thương số là 2 là số dư là 1, trong khi "9 mod 3" bằng 0 do 9 chia 3 có thương số là 3 và số dư 0; không còn gì trong phép trừ của 9 cho 3 nhân 3. (Lưu ý rằng thực hiện phép chia bằng máy tính cầm tay sẽ không hiển thị kết quả giống như phép toán này; thương số sẽ được biểu diễn dưới dạng phần thập phân.)
Mặc dù thường được thực hiện khi a và n đều là số nguyên, nhiều hệ tính toán cho phép sử dụng các kiểu khác của toán học bằng số. Giới hạn của một modulo nguyên của n là tù 0 đến n − 1. (a mod 1 luôn bằng 0; a mod 0 là không xác định, có thể trả về lỗi chia cho số 0 trong nhiều ngôn ngữ lập trình.) Xem số học mô-đun để tìm các quy ước cũ hơn và liên quan được áp dụng trong lý thuyết số.
Khi hoặc a hoặc n là số âm, định nghĩa cơ bản bị phá vỡ và các ngôn ngữ lập trình khác nhau trong việc định nghĩa các kết quả này.
Kí hiệu chứa nhé
Nó là quan hệ ngược với dấu “ \(\subset\) “ nha bạn.
Ví dụ: \(A\subset B\Rightarrow\)\(B\supset A\)