Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cosi ta có:
`x^6+y^6+z^6>=3root{3}{x^6y^6z^6}=3x^2y^2z^2`
`=>3x^2y^2z^2<=3`
`=>x^2y^2z^2<=1`
`=>xyz<=1`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)`
`=(x^4)/(xyz)+(y^4)/(xyz)+(z^4)/(xyz)>=x^4+y^4+z^4(@)`
Áp dụng BĐT bunhia với 2 cặp số `(x^2,y^2,z^2),(x,y,z)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^3+y^3+z^3)^3`
Mà `(x^3+y^3+z^3)^2>=3(x^3y^3+y^3z^3+z^3x^3)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=3(x^3y^3+y^3z^3+z^3x^3)(@@)`
Áp dụng BĐT cosi ta có:
`x^6+1+1>=3root{3}{x^6}=3x^2`
`y^6+1+1>=3y^2`
`z^6+1+1>=3z^2`
`=>x^6+y^6+z^6+6>=3(x^2+y^2+z^2)`
`=>9>=3(x^2+y^2+z^2)`
`=>x^2+y^2+z^2<=3`
Kết hợp với `(@@)`
`=>(x^2+y^2+z^2)(x^4+y^4+z^4)>=(x^2+y^2+z^2)(x^3y^3+y^3z^3+z^3x^3)`
`=>x^4+y^4+z^4>=x^3y^3+y^3z^3+z^3x^3`
Kếp hợp với `(@)`
`=>(x^3)/(yz)+(y^3)/(zx)+(z^3)/(xy)>=x^3y^3+y^3z^3+z^3x^3`
Dấu = xảy ra khi `x=y=z=1`
Ta có : x2 + y2 + z2 - yz - 4x - 3y + 7
= [x2 - 4x + 4]+[\(\frac{1}{4}\)* y2 - yz + z2 ] + [ \(\frac{3}{4}\cdot(y^2-4y+4)]\)
= (x-2)^2 + (y/2 - z)^2 + 3/4.(y-2)^2 >= 0
=> đpcm
Chúc bạn học tốt
a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)
\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)
\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)
\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).
Dấu bằng xảy ra\(\Leftrightarrow x=y\).
Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).
Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)
Lúc đó:
\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)
\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)
Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)
Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)
\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)
\(\Leftrightarrow A=B\)
Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)
Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)
\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow x=y\)
Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:
\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)
Chứng minh tương tự, ta được:
\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)
Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)
\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)
Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)
Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:
\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)
\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)
\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)
Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
\(\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)
\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3zy+5xy}+\frac{z^4}{2z^2+3xz+5yz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2x^2+2y^2+2z^2+8xy+8yz+8xz}\)
\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
Xét \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\x^2+z^2\ge2\sqrt{x^2z^2}=2xz\end{matrix}\right.\)
Cộng từng vế:
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)
\(\Rightarrow8\left(xy+yz+xz\right)\le8\left(x^2+y^2+z^2\right)\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{10}\)
Ta có: \(x^2+y^2+z^2\ge\frac{1}{3}\)
\(\Rightarrow\frac{x^2+y^2+z^2}{10}\ge\frac{1}{30}\)
\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{1}{30}\)
Vì \(\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{1}{30}\)
\(\Leftrightarrow\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\ge\frac{1}{30}\) ( đpcm )
\(M=x^2-\sqrt{x^3y}-\sqrt{xy^3}+y^2\)
\(=\sqrt{x^3}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{y^3}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x^3}-\sqrt{y^3}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2\left(x+\sqrt{xy}+y\right)\ge0\) \(\forall x;y\ge0\)
Xét \(f\left(x\right)=VT=x^2+y^2+xy-3x-3y+3\)
\(=x^2+\left(y-3\right)x+y^2-3y+3\)
Có \(\Delta=\left(y-3\right)^2-4\left(y^2-3y+3\right)\)
\(=y^2-6y+9-4y^2+12y-12\)
\(=-3y^2+6y-3\)
\(=-3\left(y-1\right)^2\le0\) với mọi \(y\inℝ\)
Mà \(f\left(x\right)\) có hệ số cao nhất bằng \(1>0\) nên từ đây có \(VT=f\left(x\right)\ge0\)
Dấu "=" xảy ra khi \(y=1\). Khi đó \(\Delta=0\) nên pt \(f\left(x\right)=0\) có nghiệm kép \(\Leftrightarrow\) \(x=\dfrac{-\left(y-3\right)}{2}=1\).
Ta có đpcm.