Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}+\frac{1}{168}\)
\(=\frac{1}{4}.\left(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=\frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\left(2-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\frac{13}{7}=\frac{13}{28}\)
Ta có :
Đặt \(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}+\frac{1}{168}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)
\(2A=\frac{1}{2}-\frac{1}{14}\)
\(2A=\frac{7}{14}-\frac{1}{14}=\frac{3}{7}\)
\(A=\frac{3}{7}:2=\frac{3}{14}\)
=> \(\frac{1}{4}+\frac{3}{14}=\frac{7}{28}+\frac{6}{28}=\frac{13}{28}\)
Ủng hộ mk nha !!! ^_^
\(\frac{1}{6}:\frac{1}{7}:\frac{1}{8}\)
=\(\frac{1}{6}x\frac{1}{7}:\frac{1}{8}\)
=\(\frac{1}{42}:\frac{1}{8}\)
=\(\frac{1}{42}x\frac{8}{1}\)
=\(\frac{8}{42}\)=\(\frac{4}{21}\)
\(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}\)
\(=\frac{1}{2}(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12})\)
\(=\frac{1}{2}(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+..+\frac{1}{10}-\frac{1}{12})\)
\(=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{12}\right)=\frac{1}{2}\cdot\frac{5}{12}=\frac{5}{24}\)
Số số hạng là:
( 100 - 2 ) : 2 + 1 = 50
Tổng là:
( 100 + 2 ) x 50 : 2 = 2550
Đáp số: 2550
`1/8+1/24+1/48+1/80+1/120`
`=1/[2xx4]+1/[4xx6]+1/[6xx8]+1/[8xx10]+1/[10xx12]`
`=1/2xx(2/[2xx4]+2/[4xx6]+2/[6xx8]+2/[8xx10]+2/[10xx12])`
`=1/2xx(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)`
`=1/2xx(1/2-1/12)`
`=1/2xx(6/12-1/12)`
`=1/2xx5/12=5/24`
\(\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
=\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{10.12}\)
=\(\dfrac{1}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{10.12}\right)\)
=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\)
=\(\dfrac{1}{2}.\dfrac{5}{12}\)
=\(\dfrac{5}{24}\)
Dấu chấm(.)là nhân.
\(S=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{224}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{14.16}\)
\(2S=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{14.16}\)
\(2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{16}\)
\(2S=\frac{1}{2}-\frac{1}{16}\)
\(S=\frac{7}{16}:2=\frac{7}{32}\)
Ủng hộ mk nha !!! ^_^
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{14.16}\)
\(S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{16}\)
\(S=\frac{1}{2}-\frac{1}{16}\)
\(S=\frac{7}{16}\)
\(\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{120}+\dfrac{1}{168}+\dfrac{1}{224}+\dfrac{1}{288}+\dfrac{1}{360}\)
\(=\dfrac{1}{2\text{x}4}+\dfrac{1}{4\text{x}6}+...+\dfrac{1}{18\text{x}20}\)
\(=\dfrac{1}{2}\text{x}\left(\dfrac{2}{2\text{x}4}+\dfrac{2}{4\text{x}6}+...+\dfrac{2}{18\text{x}20}\right)\)
\(=\dfrac{1}{2}\text{x}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{18}-\dfrac{1}{20}\right)\)
\(=\dfrac{1}{2}\text{x}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{2}\text{x}\dfrac{9}{20}=\dfrac{9}{40}\)
81+241+481+1201+1681+2241+2881+3601
=12x4+14x6+...+118x20=2x41+4x61+...+18x201
=12x(22x4+24x6+...+218x20)=21x(2x42+4x62+...+18x202)
=12x(12−14+14−16+...+118−120)=21x(21−41+41−61+...+181−201)
=12x(12−120)=12x920=940=21x(21−201)=21x209=409