K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5

Xét tam giác AEB và tam giác CFD ta có 

AB = CD (tứ giác ABCD là hbn); ^ABE = ^CDF ( soletrong ) ; DF = BE (gt) 

Vậy tam giác AEB = tam giác CFD ( c.g.c ) 

=> AE = FC ( 2 cạnh tương ứng ) (1)

tương tự với tam giác AFD = tam giác EBC 

=> AF = EC (2) 

Từ (1) ; (2) => tứ giác AECF là hbh => AE // CF 

 

Xét tam giác AEB và tam giác CFD ta có 

AB = CD (tứ giác ABCD là hbn); ^ABE = ^CDF ( soletrong ) ; DF = BE (gt) 

Vậy tam giác AEB = tam giác CFD ( c.g.c ) 

=> AE = FC ( 2 cạnh tương ứng ) (1)

tương tự với tam giác AFD = tam giác EBC 

=> AF = EC (2) 

Từ (1) ; (2) => tứ giác AECF là hbh => AE // CF 

17 tháng 10 2021

a: Xét ΔAEB và ΔCFD có 

AB=CD

\(\widehat{ABE}=\widehat{CDF}\)

BE=DF

Do đó: ΔAEB=ΔCFD

Suy ra: \(\widehat{AEB}=\widehat{CFD}\)

\(\Leftrightarrow\widehat{AEF}=\widehat{EFC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên AE//CF

17 tháng 10 2021

Giúp em câu b) với ạ !

30 tháng 10 2021

a: Xét ΔAEB và ΔCFD có 

AE=CF

\(\widehat{EAB}=\widehat{FCD}\)

AB=CD

Do đó: ΔAEB=ΔCFD

Suy ra:BE=FD

Xét ΔADE và ΔCBF có 

AE=CF

\(\widehat{DAE}=\widehat{BCF}\)

AE=CF

Do đó: ΔADE=ΔCBF

Suy ra: DE=BF

Xét tứ giác BEDF có 

BE=DF

DE=BF

Do đó: BEDF là hình bình hành

30 tháng 10 2021

giải hộ em câu c vs ạ

16 tháng 12 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: OB = OD (tính chất hình bình hành)

OE = 1/2 OD (gt)

OF = 1/2 OB (gt)

Suy ra: OE = OF

Xét tứ giác AECF, ta có:

OE = OF (chứng minh trên)

OA = OC (vì ABCD là hình bình hành)

Suy ra: Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường ) ⇒ AE // CF

1: Xét tứ giác AECF có 

O là trung điểm của AC
O là trung điểm của FE

Do đó: AECF là hình bình hành

10 tháng 10 2021

cái lon cc

23 tháng 10 2021

a, Vì O là giao điểm 2 đg chéo của hbh ABCD nên \(OB=OD\)

Mà M,N là trung điểm OB,OD nên \(OM=ON\)

Mà O là giao điểm 2 đg chéo của hbh ABCD nên \(OA=OC\)

Do đó AMCN là hbh (do O là trung điểm AC và MN)

b, Vì AMCN là hbh nên AN//CM hay AE//CF

Mà ABCD là hbh nên AD//BC hay AF//CE

Do đó AECF là hbh nên \(AE=CF\)

Do AECF là hbh mà O là trung điểm AC nên cũng là trung điểm EF

Vậy O;E;F thẳng hàng