Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\)\(=1\)
\(x+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=1\)
\(x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=1\)
\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=1\)
\(x+\frac{8}{45}=1\)
\(x=1-\frac{8}{45}=\frac{37}{45}\)
Ủng hộ mk nha !!! ^_^
Chứng minh \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)
\(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(A=\frac{1}{1}-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(\frac{20}{21}< 1\)
=> \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)( đpcm )
* Mình sợ sai xD *
Theo đề bài ta có
x+1/5-1/9+1/9-1/13+.........+1/41-1/45=-37/45
x+(1/5-1/45)=-37/45
x+8/45=-37/45
x=-37/45 - 8/45
x=-45/45
x=-1
Theo bài ra ta có:
x1/5-1/9+1/9-1/13+...+1/41-1/45=-37/45
x+8/45=-37/45
x=-45/45
x=-1/1
x=-1
\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{-37}{45}\)
\(x+4\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{4}{13.17}+...+\frac{1}{41.45}\right)=\frac{-37}{45}\)
\(x+4.\frac{1}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{-37}{45}\)
\(x+1\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{-37}{45}\)
\(x+\frac{8}{45}=\frac{-37}{45}\)
\(x=\frac{-37}{45}-\frac{8}{45}\)
\(x=\frac{-45}{45}=-1\)
Ta có:
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\)
\(=\frac{7}{x}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(=\frac{7}{x}+\frac{1}{5}-\frac{1}{45}\)
\(=\frac{7}{x}+\frac{9}{45}-\frac{1}{45}=\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}=\frac{7}{15}\)
\(\Rightarrow x=15\)
Vậy x=15
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+\frac{17-13}{13.17}+...+\frac{45-41}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+\frac{17}{13.17}-\frac{13}{13.17}+...+\frac{45}{41.45}-\frac{41}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{9}{45}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{21}{45}\)
\(\Rightarrow\frac{21}{3x}=\frac{21}{45}\)
\(\Rightarrow3x=45\)
\(\Rightarrow x=15\)
\(x+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{41.45}=\dfrac{-37}{45}\\ \Leftrightarrow x+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{-37}{45}\\ \Leftrightarrow x+\dfrac{1}{5}-\dfrac{1}{45}=\dfrac{-37}{45}\\ \Leftrightarrow x+\dfrac{8}{45}=\dfrac{-37}{45}\\ \Leftrightarrow x=-1\)
helpp
\(\dfrac{4}{1.5}\) + \(\dfrac{4}{5.9}\) + \(\dfrac{4}{9.13}\) + \(\dfrac{4}{13.17}\) + ... + \(\dfrac{4}{99.103}\)
= \(\dfrac{1}{1}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{13}\) + \(\dfrac{1}{13}\) - \(\dfrac{1}{17}\) + \(\dfrac{1}{99}\) - \(\dfrac{1}{103}\)
= \(\dfrac{1}{1}\) - \(\dfrac{1}{103}\)
= \(\dfrac{102}{103}\)