K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

A lớn nhất là 4 khi

/2x-1/=1

2x=1+1=2

x=2/2=1

Vậy A lớn nhất là =4 khi x=1

16 tháng 9 2017

sorry x=1/2 nha

Vậy Giá trị lớn nhất của A bằng 5

19 tháng 3 2020

\(|2x-1|\ge0\Rightarrow|2x-1|^2\ge0\Rightarrow5-|2x-1|^2\le0\)

\(\Rightarrow A\le5-0=5\Rightarrow A_{max}=5\text{ Dấu "=" xảy ra khi:}2x-1=0\Leftrightarrow x=\frac{1}{2}\)

A=5-|2x-1|^2

ta có |2x-1|^2 >= 0             (1)

=> A=5-|2x-1|^2 >= 5 - 0 =5

=> A >= 5

=> MinA = 5  đạt được khi dấu "=" xảy ra ở (1)

=>  |2x-1|^2 = 0

r bn tính tiếp lafg đc

15 tháng 7 2016
  • Ta có : \(A=\frac{1}{\left(2x-3\right)^2+5}\) 

Nhận thấy A đạt giá trị lớn nhất \(\Leftrightarrow\frac{1}{A}\) đạt giá trị nhỏ nhất

Lại có : \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge5\)

=>  \(\frac{1}{A}\) đạt giá trị nhỏ nhất là 5 tại x = 3/2

Vậy A đạt giá trị lớn nhất là \(\frac{1}{5}\) tại x = 3/2

  • \(B=\frac{1}{x^2-2x+3}=\frac{1}{\left(x^2-2x+1\right)+2}=\frac{1}{\left(x-1\right)^2+2}\)

Tới đây bạn làm tương tự. ^^

15 tháng 7 2016

bạn ơi mk ms hk lớp 7 nên k biết mấy cái đấy

Có (3-x)2 \(\ge\)0 với mọi x
=> 5(3-x)2 \(\ge\)0 với mọi x
=> 5(3-x)2 +7\(\ge\)7 với mọi x
=> \(\frac{1}{5\left(3-x\right)^2+7}\)\(\le\) \(\frac{1}{7}\) với mọi x
Dấu "=" xảy ra <=> (3-x)2=0 <=> 3-x=0 <=> x=3
Vậy GTLN của A bằng \(\frac{1}{7}\)<=> x=3

23 tháng 8 2018

a) \(|2x-1|\ge0\forall x\)

\(\Rightarrow A=5-|2x-1|\le5\forall x\)

\(A=5\Leftrightarrow|2x-1|=0\)\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Max A = 5 <=> x = 1/2

b) \(|x-2|\ge0\forall x\)\(\Rightarrow|x-2|+3\ge3\forall x\)

\(\Rightarrow B=\frac{1}{|x-2|+3}\le\frac{1}{3}\forall x\)

\(B=\frac{1}{3}\Leftrightarrow|x-2|=0\)\(\Leftrightarrow x=2\)

Vậy Max B = 1/3 <=>  x = 2 

23 tháng 8 2018

a) \(A=5-\left|2x-1\right|\)

Ta có  \(2x-1\le0\)

\(\Rightarrow5-\left|2x-1\right|\le5\)

Để  A đạt GTLN   \(\Leftrightarrow x=\frac{1}{2}\)

b) \(B=\frac{1}{\left|x-2\right|+3}\)

Ta có  : \(\left|x-2\right|+3\ge3\)

và \(1>0\)

\(\Rightarrow\frac{1}{\left|x-2\right|+3}\le\frac{1}{3}\)

Để B đạt GTLN \(\Leftrightarrow x=2\)

27 tháng 3 2018

A <= 5-3(2.0,5-1)^2 = 5

A=5 <=> x=0,5

27 tháng 6 2020

Bài làm:

\(3\left(2x-1\right)^2\ge0\left(\forall x\right)\)

\(\Rightarrow5-3\left(2x-1\right)^2\le5\left(\forall x\right)\)

"=" xảy ra khi: \(2x-1=0\Rightarrow x=\frac{1}{2}\)

23 tháng 10 2015

a, Để A có GTNN thì |2.x-1/3| phải có GTNN 

\(\Rightarrow\)|2.x-1/3|=0 \(\Leftrightarrow\)x=1/6

​A có GTNN =107 khi x=1/6

b,(3x-5)^20 với mọi x 

Để A có GTNN ​(3x-5)^2 phải có GTNN 

\(\Rightarrow\)(3x-5)^2=0 \(\Leftrightarrow\)x=5/3

B co GTNN =-2015 khi x=5/3

​c,Để C có GTLN khi |2x-3| phải có GTNN 

\(\Rightarrow\)|2X-3|=0 \(\Leftrightarrow\)X=1,5

C co GTLN =1 khi x=1,5

đ,(4-2x)^2 ​0 với mọi x

Để D có GTLN khi (4-2x)^2 phải có GTNN 

\(\Rightarrow\)(4-2x)^2=0 \(\Leftrightarrow\)x=2

​D có GTLN =2016 khi x=2


 

9 tháng 7 2016

\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)

\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)

Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)

Vậy minB(x)=-65/4 khi x=5/2

\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)

\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)

\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)

\(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)

Dấu  "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy maxC(x)=1/4 khi x=-1/2

9 tháng 7 2016

\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)

\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)

\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)

\(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x

=>A(x) vô nghiệm (đpcm)