K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2022

\(\dfrac{1}{2}A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}\)

\(A-\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^{2023}-1\)

\(\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^{2023}-1\)

\(A=\dfrac{1}{2^{2022}}-2\)

28 tháng 12 2022

12A=12+(12)2+(12)3+(12)4+...+(12)202312A=12+(12)2+(12)3+(12)4+...+(12)2023

A−12A=(12)2023−1A−12A=(12)2023−1

12A=(12)2023−112A=(12)2023−1

A=122022−2

30 tháng 3 2022

= 27/20 + -1/2 + 347/100 - 1/3 - 1/6

= 191/50

25 tháng 4 2022

undefined

làm vào bài đừng có dùng ngoặc kép như tui nha,tui làm minh họa cho bạn hiểu

12 tháng 3 2022

Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

Cộng vế với vế ta được 

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow T< 2-\dfrac{1}{20}=\dfrac{39}{20}\)

mà 39/20 < 8/7 => T < 8/7 

30 tháng 1 2022

undefined

Câu b thì gg search nhé

=>7/6x-1=-10/3

=>7/6x=-7/3

hay x=-2

5 tháng 8 2021

a)\(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=\dfrac{-5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

a) Ta có: \(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=-\dfrac{5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) Ta có: \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)