K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 

loading...

b: Tọa độ giao điểm của d1 với trục Ox là:

\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{4}x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\dfrac{x}{4}=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-12\\y=0\end{matrix}\right.\)

Vậy: (d1) giao Ox tại A(-12;0)

Tọa độ giao điểm của (d1) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{4}x+3=\dfrac{1}{4}\cdot0+3=3\end{matrix}\right.\)

vậy: (d1) giao Oy tại B(0;3)

12 tháng 9 2023

- Vẽ đồ thị hàm số \(y = x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{1} =  - 3\) ta được điểm \(B\left( { - 3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(B\).

- Vẽ đồ thị hàm số \(y =  - x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{{ - 1}} = 3\) ta được điểm \(C\left( {3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y =  - x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(C\).

Từ đồ thị ta thấy giao điểm của hai đường thẳng là \(A\left( {0;3} \right)\).

Đường thẳng \({d_1}\) cắt trục \(Ox\) tại \(B\left( { - 3;0} \right)\).

Đường thẳng \({d_2}\) cắt trục \(Oy\) tại \(C\left( {3;0} \right)\).

8 tháng 7 2018

giúc mk với 

11 tháng 10 2021

b: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+2\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{4}\cdot4^2=4\\y=\dfrac{1}{4}\cdot\left(-2\right)^2=1\end{matrix}\right.\)

12 tháng 9 2023

a)

- Với \(x =  - 2 \Rightarrow f\left( { - 2} \right) =  - 2;g\left( { - 2} \right) =  - 2 + 3 = 1\);

- Với \(x =  - 1 \Rightarrow f\left( { - 1} \right) =  - 1;g\left( { - 1} \right) =  - 1 + 3 = 2\);

- Với \(x = 0 \Rightarrow f\left( 0 \right) = 0;g\left( 0 \right) = 0 + 3 = 3\);

- Với \(x = 1 \Rightarrow f\left( 1 \right) = 1;g\left( 1 \right) = 1 + 3 = 4\);

- Với \(x = 2 \Rightarrow f\left( 2 \right) = 2;g\left( 2 \right) = 2 + 3 = 5\); 

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y = f\left( x \right) = x\)

–2

–1

0

1

2

\(y = g\left( x \right) = x + 3\)

1

2

3

4

5

b)

- Vẽ đồ thị hàm số \(y = f\left( x \right) = x\)

Cho \(x = 1 \Rightarrow y = f\left( x \right) = 1\). Ta vẽ điểm \(A\left( {1;1} \right)\)

Đồ thị hàm số \(y = x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(A\left( {1;1} \right)\).

- Các điểm có tọa độ thỏa mãn hàm số \(y = g\left( x \right)\) trong bảng trên là \(B\left( { - 2;1} \right);C\left( { - 1;2} \right);D\left( {0;3} \right);E\left( {1;4} \right);F\left( {2;5} \right)\).

c) Ta đặt thước thẳng kiểm tra thì thấy các điểm thuộc đồ thị hàm số \(y = g\left( x \right) = x = 3\) thẳng hàng với nhau.

Dự đoán cách vẽ đồ thị hàm số \(y = g\left( x \right)\):

Bước 1: Chọn hai điểm \(A;B\) phân biệt thuộc đồ thị hàm số \(y = g\left( x \right)\).

Bước 2: Vẽ đường thẳng đi qua hai điểm \(A;B\).

Đồ thị hàm số \(y = g\left( x \right)\) là đường thẳng đi qua hai điểm \(A;B\).

a:Đặt (d1): y=2x-3

Tọa độ giao điểm của (d1) với trục Ox là:

\(\left\{{}\begin{matrix}y=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\end{matrix}\right.\)

Tọa độ giao điểm của (d1) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0-3=0-3=-3\end{matrix}\right.\)

b: Đặt (d2): \(y=-\dfrac{3}{4}x\)

Tọa độ giao điểm của (d2) với trục Ox là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{3}{4}x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Tọa độ giao điểm của (d2) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{3}{4}x=-\dfrac{3}{4}\cdot0=0\end{matrix}\right.\)

c: Đặt \(\left(d3\right):y=2x^2\)

Tọa độ giao điểm của (d3) với trục Ox là:

\(\left\{{}\begin{matrix}2x^2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y=2x^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=2\cdot0^2=0\end{matrix}\right.\)

Tọa độ giao điểm của (d3) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0^2=0\end{matrix}\right.\)

d: Đặt (d4): \(y=\dfrac{x+1}{x-2}\)

ĐKXĐ: x<>2

Tọa độ giao điểm của (d4) với trục Ox là:

\(\left\{{}\begin{matrix}y=0\\y=\dfrac{x+1}{x-2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

Tọa độ giao điểm của (d4) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=\dfrac{x+1}{x-2}=\dfrac{0+1}{0-2}=\dfrac{1}{-2}=-\dfrac{1}{2}\end{matrix}\right.\)

e: Đặt (d5): \(y=x-2+\dfrac{1}{x}\)

ĐKXĐ: x<>0

Vì hàm số không đi qua điểm có hoành độ là x=0 nên (d5) sẽ không cắt trục Oy

Tọa độ giao điểm của (d5) với trục Ox là:

\(\left\{{}\begin{matrix}y=0\\x-2+\dfrac{1}{x}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=0\\y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

f: Đặt (d6): \(y=x^2+2x-5\)

Tọa độ giao điểm của (d6) với trục Oy là:

\(\left\{{}\begin{matrix}x=0\\y=x^2+2x-5=0^2+2\cdot0-5=-5\end{matrix}\right.\)

Tọa độ giao điểm của (d6) với trục Ox là:

\(\left\{{}\begin{matrix}y=0\\x^2+2x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x^2+2x+1-6=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\left(x+1\right)^2=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x+1=\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x+1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=\sqrt{6}-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x=-\sqrt{6}-1\end{matrix}\right.\end{matrix}\right.\)

15 tháng 12 2023

Bạn nhập lại hai hàm số đó nhé chính giữa mik không biết là dấu + hay - 

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Đồ thị hàm số y = 2x – 1 là một đường thẳng đi qua hai điểm là (0; –1) và \(\left(\dfrac{1}{2};0\right)\)

Đồ thị hàm số y = –x + 2 là một đường thẳng đi qua hai điểm là (0; 2) và (2; 0).

Đồ thị của hai hàm số đã cho như hình sau:

b) Phương trình hoành độ giao điểm của đồ thị hai hàm số là 

2x – 1 = –x + 2

3x = 3

x = 1

Thay x = 1 vào hàm số y = 2x – 1, ta được y = 2 . 1 – 1 = 1.

Vậy tọa đô giao điểm của hai đồ thị hàm số trên là điểm A (1; 1).

12 tháng 9 2023

Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).

Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).

6 tháng 6 2019

+) Hàm số \(y=\frac{1}{2}x+2\)

\(x=0\Rightarrow y=2\)\(\Rightarrow A\left(0;2\right)\)

\(y=0\Rightarrow x=-4\)\(\Rightarrow B\left(-4;0\right)\)

Đồ thị hàm số \(y=\frac{1}{2}x+2\)là đường thẳng đi qua 2 điểm \(A\left(0;2\right)\)và \(B\left(-4;0\right)\)

+) Hàm số y = -x + 2

\(x=0\Rightarrow y=2\)\(\Rightarrow A\left(0;2\right)\)

\(y=0\Rightarrow x=2\)\(\Rightarrow D\left(2;0\right)\)

Đồ thị hàm số y = -x + 2 là đường thẳng đi qua 2 điểm \(A\left(0;2\right)\)và \(D\left(2;0\right)\)

O x y D A B -2 -4 2 y=1/2x+2 y=-x+2 2

12 tháng 9 2023

a)

- Vẽ đồ thị hàm số \(y = x\).

Cho \(x = 1 \Rightarrow y = 1 \Rightarrow \)Đồ thị hàm số đi qua điểm \(M\left( {1;1} \right)\).

Đồ thị hàm số \(y = x\) là đường thẳng đi qua hai điểm \(O\) và \(M\).

- Vẽ đồ thị hàm số \(y = x + 2\)

Cho \(x = 0 \Rightarrow y = 2\) ta được điểm \(A\left( {0;2} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 2}}{1} =  - 2\) ta được điểm \(B\left( { - 2;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y = x + 2\) là đường thẳng đi qua hai điểm \(A\) và \(B\).

b) Góc tạo bởi hai đường thẳng  \(y = x\) và \(y = x + 2\) với trục \(Ox\) lần lượt là \({\alpha _1}\) và \({\alpha _2}\).

Dùng thước đo độ kiểm tra ta thấy số đo \({\alpha _1} = {\alpha _2} = 45^\circ \).