\(\left(H\in BC\right)\) biết góc B=45độ; HB= 20cm; HC= 21...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

may bai tre trau ma lam deo dc ak.

\(AH⊥BC\)

B=45 do

suy ra BAH=45 do

tam giac BAH can o H

HA=HB=20

xet tam giac AHC vuong o H

AC^2=AH^2+HC^2=841

AC=29

25 tháng 8 2017

Tam giác AHB vuông tại H có góc B=45độ.

=> AH=HB=20cm.

Áp dụng ĐL Pitago, ta có:

AC2=AH2+HC2=400+441=841

=> AC=29cm

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

14 tháng 6 2021

A B C H 12 20 E

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=400-144=256\Leftrightarrow AC=16\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{144}+\frac{1}{256}=\frac{256+144}{144.256}\)

\(\Rightarrow400AH^2=36864\Leftrightarrow AH^2=\frac{36864}{400}=\frac{2304}{25}\Leftrightarrow AH=\frac{48}{5}\)cm 

14 tháng 6 2021

b, * Áp dụng hệ thức : \(AH^2=AE.AB\)(1) 

Áp dụng định lí Pytago cho tam giác AHC vuông tại H 

\(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\) (2) 

Từ (1) ; (2)  suy ra : \(AE.AB=AC^2-HC^2\)( đpcm )

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác ABC vuông, đường cao AH ta có:

\(AB^2=BH\cdot BC\\ AC^2=CH\cdot BC\\ \Rightarrow\frac{AB^2}{AC^2}=\frac{BH\cdot BC}{CH\cdot BC}=\frac{HB}{HC}\)

\(\Rightarrow\frac{HB}{HC}=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)

28 tháng 2 2016

tam giác AHC vuông cân suy ra AH=HC

xét tam giác AHB có góc AH =90'  tanABH=tan60=\(\frac{AH}{BH}\)=\(\sqrt{3}\)

ta có BH+CH=3+\(\sqrt{3}\)(=BC)

suy ra:\(\frac{AH}{\sqrt{3}}\)+AH=3+\(\sqrt{3}\)

suy ra AH=\(\frac{3+\sqrt{3}}{\frac{1}{\sqrt{3}}+1}\)   suy ra AH=3

7 tháng 10 2020

b) CM: \(\Delta ABH~\Delta CAH\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)

\(\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36cm\)

từ \(\Delta ABH~\Delta CAH\Rightarrow\frac{AH}{HC}=\frac{BH}{AH}\Rightarrow BH.HC=AH^2\)

\(\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25cm\)