Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
a,theo định lý pytago đảo tính dc A=90
các góc còn lại tính bằng máy tính nha bạn.bạn lấy máy tính bấm \(sin^{-1}\)(cạnh đối/cạnh huyền) là ra góc cần tính nha bạn
b,ah vuông góc bc mà tam giác abc vuông tại a nên
\(AB^2=BH.BC\Rightarrow100=BH.26\Rightarrow BH=\dfrac{50}{13}\)
\(\Rightarrow CH=BC-BH=\dfrac{288}{13}\)
\(\Rightarrow AH^2=BH.CH=\dfrac{14400}{169}\Rightarrow AH=\dfrac{120}{13}\)
tick mik nha bn
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
3:
Đặt HB=x; HC=y
Theo đề, ta có: x+y=289 và xy=120^2=14400
=>x,y là các nghiệm của phương trình:
a^2-289a+14400=0
=>a=225 hoặc a=64
=>(x,y)=(225;64) và (x,y)=(64;225)
TH1: BH=225cm; CH=64cm
=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)
TH2: BH=64cm; CH=225cm
=>AB=119m; AC=255cm
ban tu ve hinh nha
ta co \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)
\(\Rightarrow AB=9,AC=12\)
ap dung dl pitago vao tam giac ABC vuong tai A
\(AB^2+AC^2=BC^2\Rightarrow BC=15\)
B. ap dung he thuc luong trong tam gia vuong ABC co
\(AH\cdot BC=AC\cdot AB\Rightarrow AH=\frac{12\cdot9}{15}=7,2\)
\(AB^2=BH\cdot CB\Rightarrow BH=\frac{9^2}{15}=5.4\)\(\Rightarrow CH=BC-BH=15-5,4=9.6\)
Xét \(\Delta ABH\)và \(\Delta CAH\)có
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với góc HAC)
suy ra: \(\Delta ABH~\Delta CAH\) (g.g)
suy ra: \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)
hay \(\frac{5}{6}=\frac{30}{CH}=\frac{BH}{30}\)
suy ra: \(CH=\frac{6.30}{5}=36\)
\(BH=\frac{5.30}{6}=25\)
Ta có: \(HC-HB=6\)
\(\Leftrightarrow HC=HB+6\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
\(\Leftrightarrow HB=2\left(cm\right)\)
\(\Leftrightarrow HC=8\left(cm\right)\)
\(\Leftrightarrow BC=10\left(cm\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b) CM: \(\Delta ABH~\Delta CAH\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)
\(\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36cm\)
từ \(\Delta ABH~\Delta CAH\Rightarrow\frac{AH}{HC}=\frac{BH}{AH}\Rightarrow BH.HC=AH^2\)
\(\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25cm\)