K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1

ĐK:x≥1. Chứng minh y≥0

15 tháng 1

trải lời đi nhanh lên

Xét ΔPOQ có OP=OQ=PQ

nên ΔOPQ đều

=>góc POQ=60 độ

=>góc NOQ=30 độ

a) Xét ΔOAB có OA=OB=AB(=R)

nên ΔOAB đều(Dấu hiệu nhận biết tam giác đều)

\(\Leftrightarrow\widehat{AOB}=60^0\)

\(\Leftrightarrow sđ\stackrel\frown{AB}=60^0\)

a) Xét ΔOAB có OA=OB=AB(=R)

nên ΔOAB đều(Dấu hiệu nhận biết tam giác đều)

\(\Leftrightarrow\widehat{AOB}=60^0\)

hay \(sđ\stackrel\frown{AB}=60^0\)

NV
5 tháng 8 2021

Do I là trung điểm AB \(\Rightarrow OI\perp AB\)

\(AI=\dfrac{1}{2}AB=3\)

Trong tam giác vuông OAI, áp dụng Pitago:

\(OI=\sqrt{OA^2-AI^2}=\sqrt{R^2-AI^2}=4\)

\(\Rightarrow IM=OM-OI=R-OI=1\)

\(\Rightarrow AM=\sqrt{AI^2+IM^2}=\sqrt{10}\left(cm\right)\)

b.

Vẫn như trên, ta có: \(AI=\dfrac{1}{2}AB=6\)

Do MN là đường kính \(\Rightarrow\Delta MAN\) vuông tại A

Áp dụng hệ thức lượng trong tam giác vuông MAN với đường cao AI:

\(\dfrac{1}{AI^2}=\dfrac{1}{AN^2}+\dfrac{1}{AM^2}\Rightarrow\dfrac{1}{6^2}=\dfrac{1}{10^2}+\dfrac{1}{AM^2}\Rightarrow AM=\dfrac{15}{2}\)

Áp dụng hệ thức lượng:

\(AI.MN=AN.AM\Leftrightarrow MN=\dfrac{AM.AN}{AI}=\dfrac{25}{2}\)

\(\Rightarrow R=\dfrac{MN}{2}=\dfrac{25}{4}\left(cm\right)\)

NV
5 tháng 8 2021

undefined

29 tháng 8 2019

a, Tính được OK =  R 2

b, Tính được  M O K ^ = 60 0 ; M O N ^ = 120 0

c, HS tự làm

 

loading...  loading...  loading...  

3 tháng 3

chẳng thấy gì luôn

 

21 tháng 5 2017

Vì hai cung không phải là cung lớn nên nó có thể là cung nhỏ hoặc cung nửa đường tròn

Cung nửa đường tròn có số đo bằng 180 ° và dây căng cung bằng 2R

Cung  60 °  có dây căng cung là R

Vậy cung nửa đường tròn và cung  60 °  thỏa mãn bài toán