K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

Xét tứ giác AECK có \(\widehat{AEC}+\widehat{AKC}=90^0+90^0=180^0\)

nên AECK là tứ giác nội tiếp

b: Xét ΔIAB có

BK,IE là các đường cao

BK cắt IE tại C

Do đó: C là trực tâm của ΔIAB

=>AC\(\perp\)IB tại D

Xét tứ giác CEBD có \(\widehat{CEB}+\widehat{CDB}=90^0+90^0=180^0\)

nên CEBD là tứ giác nội tiếp

Xét tứ giác AKCE có \(\widehat{AKC}+\widehat{AEC}=90^0+90^0=180^0\)

nên AKCE là tứ giác nội tiếp

Xét tứ giác IKCD có \(\widehat{IKC}+\widehat{IDC}=90^0+90^0=180^0\)

nên IKCD là tứ giác nội tiếp

Ta có: \(\widehat{DKC}=\widehat{DIC}\)(DIKC nội tiếp)

\(\widehat{EKC}=\widehat{EAC}\)(KAEC nội tiếp)

mà \(\widehat{DIC}=\widehat{EAC}\left(=90^0-\widehat{DBA}\right)\)

nên \(\widehat{DKC}=\widehat{EKC}\)

=>KC là phân giác của góc DKE

Ta có: \(\widehat{KDC}=\widehat{KIC}\)(DIKC là tứ giác nội tiếp)

\(\widehat{EDC}=\widehat{EBC}\)(EBDC nội tiếp)

mà \(\widehat{KIC}=\widehat{EBC}\left(=90^0-\widehat{KAB}\right)\)

nên \(\widehat{KDC}=\widehat{EDC}\)

=>DC là phân giác của góc KDE

Xét ΔKED có

DC,KC là các đường phân giác

Do đó: C là tâm đường tròn nội tiếp ΔKED

=>C cách đều ba cạnh của ΔKED

loading...  loading...  loading...  

3 tháng 3

chẳng thấy gì luôn

 

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
10 tháng 5 2017

a, Ta có AKB =AEB  (vì cùng chắn cung AB của đường tròn ngoại tiếp tam giác AEB)

Mà ABE =AEB  (tính chất đối ứng) suy ra AKB= ABE (1)

AKC= AFC (vì cùng chắn cung AC của đường tròn ngoại tiếp tam giác AFC)

ACF= AFC  (tính chất đối x

a) Xét ΔOAB có OA=OB=AB(=R)

nên ΔOAB đều(Dấu hiệu nhận biết tam giác đều)

\(\Leftrightarrow\widehat{AOB}=60^0\)

hay \(sđ\stackrel\frown{AB}=60^0\)

20 tháng 5 2018

Ta có BOC=120o ;BKC =60o suy ra BOC +BKC =180 nên tứ giác BOCK ni tiếp đường tròn.

Ta có OB=OC=R suy ra OB= OC=> BKO= CKO  hay KO là phân giác góc BKC theo phần (a) KA