Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=15cm
=>AM=7,5cm
b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
a) Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)
nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Vì D đối xứng với M qua AB(gt)
nên AB là đường trung trực của DM
⇔AB vuông góc với DM tại trung điểm của DM
mà AB cắt DM tại H(gt)
nên H là trung điểm của DM và MH⊥AB tại H
Ta có: MH⊥AB(cmt)
AC⊥AB(ΔABC vuông tại A)
Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)
hay MD//AC
Ta có: H là trung điểm của MD(cmt)
nên \(MH=\dfrac{1}{2}\cdot MD\)(1)
Xét ΔABC có
M là trung điểm của BC(gt)
MH//AC(cmt)
Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
H là trung điểm của AB(cmt)
Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra AC=MD
Xét tứ giác ACMD có
AC//MD(cmt)
AC=MD(cmt)
Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
b: Xét ΔCAB có
M là trung điểm của AB
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác AMCN có
E là trung điểm của đường chéo AC
E là trung điểm của đường chéo MN
Do đó: AMCN là hình bình hành
mà MN⊥AC
nên AMCN là hình thoi
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AM=EF
hay EF=5cm
a: Xét tứ giác BMEC có ME//BC
nên BMEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMEC là hình thang cân
b: Xét ΔABC có
M là trung điểm của AB
ME//BC
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của AB
MF//AC
Do đó: F là trung điểm của BC
Xét ΔABC có
M là trung điểm của AB
F là trung điểm của BC
Do đó: MF là đường trung bình của ΔBAC
Suy ra: \(MF=\dfrac{AC}{2}\)
mà \(EC=\dfrac{AC}{2}\)
nên MF=EC
Xét tứ giác MECF có
MF//EC
MF=EC
Do đó: MECF là hình bình hành
c: Xét ΔABC có
M là trung điểm của AB
E là trung điểm của AC
Do đó: ME là đường trung bình của ΔABC
Suy ra: ME//BC và \(ME=\dfrac{BC}{2}\)
mà \(BF=\dfrac{BC}{2}\)
nên ME//BF và ME=BF
Xét tứ giác MEFB có
ME//BF
ME=BF
Do đó: MEFB là hình bình hành
Suy ra: Hai đường chéo MF và BE cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MF
nên I là trung điểm của BE
hay B,I,E thẳng hàng
a) AEMF là hcn (3 góc vuông) nên AM=EF
b) Theo định lí tam giác vuông về đường trung tuyến ứng với cạnh huyền có MA=MB=MC=1/2BC
do đó EF=MC ( cùng bằng AM)
Theo định lí đường trung bình tam giác có ME=FA=FC=1/2AC
nên EFCM là hbh (các cạnh đối bằng nhau)
c) Theo tính đối xứng trục có AM=AK và BM=BK
Mà MA=MB (cmt) nên MA=MB=BK=KA nên AMBK là hthoi (dhnb)
d) CMtt câu a) có EFMB là hbh nên EM và BF cắt nhau tại trung điểm P của mỗi đường
AFEM là hcn nên AM và EF cắt nahu tại trung điểm Q của mỗi đường
Do đó PQ là đường trung bình của tam giác FEB nên PQ//EB hay PQ//AB
Bạn ơi cho mình hỏi chỗ ambk là hình thoi ( là gì vậy bạn )