Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 ( x + 5 ) - x - 11 = 24
3x + 15 - x - 11 = 24
2x + 4 = 24
2x = 24 - 4
2x = 20
x = 10
Vậy: x = 10
-( -x + 13 - 142 ) + 18 = 55
-( -x - 129) + 18 = 55
x + 129 + 18 = 55
x + 147 = 55
x = 55 - 147
x = -92
b, 25 - 3.(6 -x ) = 22
3(6-x) = 25 - 22
3(6-x) = 3
6 - x = 1
x =5
c, [ ( 2x - 11 ) :3 +1] .5 = 20
( 2x - 11) : 3 + 1 = 20 : 5
(2x - 11) : 3 + 1 = 4
( 2x - 11) : 3 = 4 - 1
(2x - 11 ) : 3 = 3
2x - 11 = 3 x 3
2x - 11 = 9
2x = 9 + 11
2x = 20
x = 10
d, 3(x+5) - x - 11 = 24
3(x+5) - x = 24 +11
3x + 15 - x = 35
2x = 35 - 15
2x = 20
x = 10
Ta có: \(\dfrac{x-2}{5}=\dfrac{x+1}{6}\)
\(\Leftrightarrow6\left(x-2\right)=5\left(x+1\right)\)
\(\Leftrightarrow6x-12=5x+5\)
\(\Leftrightarrow6x-5x=5+12\)
hay x=17
Vậy: x=17
a: =>(x-2)^3*[(x-2)^8-1]=0
=>(x-2)(x-3)(x-1)=0
=>\(x\in\left\{2;3;1\right\}\)
b: (x-5)^24=(x-5)^9
=>\(\left(x-5\right)^9\cdot\left[\left(x-5\right)^{15}-1\right]=0\)
=>x-5=0 hoặc x-5=1
=>x=6 hoặc x=5
c: =>(x-5)^4*[(x-5)^21-1]=0
=>x-5=0 hoặc x-5=1
=>x=5 hoặc x=6
a) \(\left(x-2\right)^{11}=\left(x-2\right)^3\)
\(\Rightarrow\left(x-2\right)^{11}-\left(x-2\right)^3=0\)
\(\Rightarrow\left(x-2\right)^3\left[\left(x-2\right)^8-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^3=0\\\left(x-2\right)^8-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x-2\right)^8=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x-2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b) \(\left(x-5\right)^{24}=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^{24}-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^9\left[\left(x-5\right)^{15}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^9=0\\\left(x-5\right)^{15}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^{15}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
c) \(\left(x-5\right)^{25}=\left(x-5\right)^4\)
\(\Rightarrow\left(x-5\right)^{25}-\left(x-5\right)^4\)
\(\Rightarrow\left(x-5\right)^4\left[\left(x-5\right)^{21}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^4=0\\\left(x-5\right)^{21}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^{21}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
`x/8 = 3/4 +(-5/8)`
`=>x/8 = 6/8 +(-5/8)`
`=>x/8 = 1/8`
`=>x=1`
`-----`
`x/12 =3/4 +(-2/3)`
`=>x/12 = 9/12 + (-8/12)`
`=> x/12=1/12`
`=>x=1`
`----`
`1+11/13=24/x`
`=> 13/13 +11/13=24/x`
`=> 24/13 =24/x`
`=>x=13`
`----`
`x/6 -3/4=1/12`
`=>x/6 = 1/12 +3/4`
`=>x/6 = 1/12 + 9/12`
`=>x/6 = 10/12`
`=>x/6= 5/6`
`=>x=5`
3. (x+5) - x - 11 = 24
3.x + 3.5 - x - 11 = 24
3.x - x = 24 + 11 - 15
2.x = 20
x= 20:2
x=10
3. (x+5) - x - 11 = 24
3x + 3.5 - x = 24 + 11
3x + 15 - x = 35
3x - x + 15 = 35
2x = 35 -15
2x = 20
x = 20 : 2
x = 10