Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét : x-4 = 0 => x= 4
2x+1 = 0 => x= \(\frac{1}{2}\)
x+3 = 0 => x = -3
x + 9 = 0 => x = -9
Khi đó ta có bảng xét dấu :
x | -9 | -3 | \(\frac{1}{2}\) | 4 |
x-4 | -13 | -7 | \(\frac{-7}{2}\) | 0 |
2x+1 | -17 | -5 | 2 | 9 |
x+3 | -6 | 0 | \(\frac{7}{2}\) | 7 |
x+9 | 0 | 6 | \(\frac{19}{2}\) | 13 |
=> có 5 trường hợp:
TH1 : \(x\le-9\)
TH2 : \(-9\le x< -3\)
TH3 : \(-3\le x< \frac{1}{2}\)
TH4 : \(\frac{1}{2}\le x< 4\)
Do đó :
TH1 : \(x\le-9\)
Ta có : /x-4/ = -(x-4) = 4 - x
/2x+1/ = -(2x+1) = -2x -1
/x+3/ = -(x + 3 ) = -x - 3
/x-9/ = -(x-9) = -x + 9 Thay vào đề bài ta có:
3.(4-x) + 2x-1 +5(-x - 3) -x-9 = 5
=> 12 - 3x + 2x - 1 + -5x - 15 - x - 9 = 5
=>(12 - 1 - 15 -9 ) +(-3x +2x -5x -x) = 5
=> -13 - 7x = 5
7x = -13 - 5
7x = -18
x = \(\frac{-18}{7}\)( Ko TM)
Tương tự với 4 trường hợp còn lại.
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
a)\(\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\)
\(4x^2-11x-3-\left(4x^2-29x+7\right)=15\)
\(4x^2-11x-3-4x^2+29x-7=15\)
\(18x-10=15\)
\(x=\frac{25}{18}\)
b)\(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\left(x+1\right)\left(3x-5-3x+1\right)=x-4\)
\(\left(x+1\right).\left(-4\right)-x+4=0\)
\(-4x-4-x+4=0\)
\(x=0\)
\(\left|2x-\frac{1}{2}\right|+1=3x\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)