K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)

=>-38x=7

hay x=-7/38

b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)

=>1/2x=0

hay x=0

c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)

=>-29x=15

hay x=-15/29

d: \(\Leftrightarrow x^2+2x-x-3=5\)

\(\Leftrightarrow x^2+x-8=0\)

\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)

e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)

\(\Leftrightarrow-25x^2=4\)

\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)

13 tháng 10 2018

a) 5x.(x+3/4) = 0

=> x = 0

x+3/4 = 0 => x = -3/4

b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)

\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)

\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)

\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)

\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)

\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

=> x + 2017 = 0

x = -2017

13 tháng 10 2018

a) để 2x - 3 > 0

=> 2x > 3

x > 3/2

b) 13-5x < 0

=> 5x < 13

x < 13/5

c) \(\frac{x+3}{2x-1}>0\)

=> x + 3 > 0

x > -3

d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)

Để x+7/x+3 < 1

=> 1 + 4/x+3 < 1

=> 4/x+3 < 0

=> không tìm được x thỏa mãn điều kiện

28 tháng 9 2017

Dễ thế mà không làm được

6 tháng 9 2019

a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

b. \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)

c, \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)

\(\Rightarrow5x=7\)

\(\Rightarrow x=\frac{7}{5}\)

e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)

Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }

x - 21-17-7
x319-5

 Vậy....

6 tháng 9 2019

a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

Vậy : ....

b) \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)

c) \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

Vậy :...

5 tháng 7 2017

a) * Nếu 4x - 5 \(\ge\) 0 thì x \(\ge\) \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(3-2\left(4x-5\right)=\dfrac{2}{6}\)

\(\Leftrightarrow\) \(-8x=-3-10+\dfrac{2}{6}\)

\(\Leftrightarrow\) x = \(\dfrac{19}{12}\) (t/m)

* Nếu 4x - 5 < 0 thì x < \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(3-2\left(-4x+5\right)=\dfrac{2}{6}\)

\(\Leftrightarrow\) \(3+8x-10=\dfrac{2}{6}\)

\(\Leftrightarrow\) x = \(\dfrac{11}{12}\) (t/m)

b) Không hiểu đề :v

c) \(\left(7-3x\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d) \(2x\left(5-3x\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{5}{3}\)

e) \(\left(4-2x\right)\left(5x+3\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-2x< 0\\5x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4-2x>0\\5x+3< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< -\dfrac{3}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

Loại TH1, nhận TH2

Vậy \(-\dfrac{3}{5}< x< 2\)

g) \(\left|3x+1\right|+\left|1-3x\right|=0\) (1)

* Nếu x < \(\dfrac{-1}{3}\)

PT (1) \(\Leftrightarrow-3x-1-1+3x=0\)

0x - 2 = 0

0x = 2 \(\Rightarrow\) PT vô nghiệm

* Nếu \(\dfrac{-1}{3}\le x\le\dfrac{1}{3}\)

PT (1) \(\Leftrightarrow3x+1-1+3x=0\)

6x = 0

x = 0 (t/m)

* Nếu x > \(\dfrac{1}{3}\)

PT (1) \(\Leftrightarrow3x+1+1-3x=0\)

0x + 2 = 0

0x = -2

PT vô nghiệm.

Vậy x = 0

5 tháng 7 2017

a, \(3-2\left|4x-5\right|=\dfrac{2}{6}\)

\(\Rightarrow2\left|4x-5\right|=\dfrac{8}{3}\)

\(\Rightarrow\left|4x-5\right|=\dfrac{4}{3}\)

+) Xét \(x\ge\dfrac{5}{4}\) có:

\(4x-5=\dfrac{4}{3}\Rightarrow4x=\dfrac{19}{3}\Rightarrow x=\dfrac{19}{12}\) ( t/m )

+) Xét \(x< \dfrac{5}{4}\) có:

\(4x-5=\dfrac{-4}{3}\Rightarrow4x=\dfrac{11}{3}\Rightarrow x=\dfrac{11}{12}\) ( t/m )

Vậy...

b, tương tự

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy...

d, \(2x\left(5-3x\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}2x< 0\\5-3x< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{3}{5}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x>\dfrac{3}{5}\end{matrix}\right.\) (loại )

Vậy \(0< x< \dfrac{3}{5}\)

e, tương tự

g, \(\left|3x+1\right|+\left|1-3x\right|=0\)

\(\Rightarrow\left|3x+1\right|+\left|3x-1\right|=0\)

+) Xét \(x\ge\dfrac{1}{3}\) có:

\(3x+1+3x-1=0\)

\(\Rightarrow6x=0\)

\(\Rightarrow x=0\) ( ko t/m )
+) Xét \(\dfrac{-1}{3}\le x< \dfrac{1}{3}\) có:

\(3x+1+1-3x=0\)

\(\Rightarrow2=0\) ( vô lí )

+) Xét \(x< \dfrac{-1}{3}\) có:

\(-3x-1+1-3x=0\)

\(\Rightarrow-6x=0\Rightarrow x=0\) ( ko t/m )

Vậy ko có giá trị x thỏa mãn đề bài

30 tháng 7 2019

\(\left|2x-\frac{1}{2}\right|+1=3x\)

\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)