Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(D=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
\(\Rightarrow\)Để D đạt giá trị nhỏ nhất thì \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất
Ta có : \(3>0\) và \(\frac{3}{n-2}\)đạt giá trị nhỏ nhất \(\Rightarrow n-2\)nhỏ nhất
\(\Rightarrow n-2\)là số nguyên dương nhỏ nhất
\(\Rightarrow n-2=1\Rightarrow n=3\in Z\)
Vậy \(n=3\) thì D có giá trị nhỏ nhất
\(D=\frac{n+1}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
D lớn nhất <=> \(\frac{3}{n-2}\) lớn nhất
<=> n - 2 là số nguyên dương nhỏ nhất (vì nếu là 0 thì phân số k có nghĩa, còn nếu là số âm thì \(\frac{3}{n-2}\) cũng âm nên k thể lớn nhất được)
<=> n - 2 = 1 <=> n = 3
D đạt GTLN là \(\frac{3+1}{3-2}=\frac{4}{2}=2\) tại n = 3
\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{8^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...0...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=0\)
Vậy...
\(A=2^0+2^1+2^2+2^3+...+2^{2009}\)
\(=>2A=2^1+2^2+2^3+...+2^{2009}+2^{2010}\)
\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2009}+2^{2010}\right)-\left(2^0+2^1+2^2+2^3+...+2^{2009}\right)\)
64-(-37+65)+(-65+21-370+(-64))
=64-37-65+(-65)+21-370+(-64)
=(65+(-65))+((-64)+64)-(37+21-370)
=0+0-(-322)
=322
64-(-37+65)+(-65+21-370+(-64)
=64 + 37 - 65 -65 + 21 - 370 - 64
=- 442
Trần Tuyết Tâm
`#3107`
`64 \times 57 + 64 \times 43 - 2360`
`= 64 \times (57 + 43) - 2360`
`= 64 \times 100 - 2360`
`= 640 \times 10 - 236 \times 10`
`= (640 - 236) \times 10`
`= 404 \times 10`
`= 4040`
4040