Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
Câu 1 thì mình biết làm đó.
Vì 2013 chia 7 dư 4 nên 20132012 chia 7 cũng dư 4
Câu a : Ta có :
\(2012^1\equiv17\left(mod57\right)\)
\(2012^2\equiv17^2\equiv4\left(mod57\right)\)
\(2012^7\equiv17^7\equiv5\left(mod57\right)\)
\(2012^{10}\equiv5.4.17\equiv55\left(mod57\right)\)
\(2012^{30}\equiv55^3\equiv49\left(mod57\right)\)
\(2012^{60}\equiv49^2\equiv7\left(mod57\right)\)
\(\Rightarrow2012^{67}\equiv7.5\equiv35\left(mod57\right)\)
Vậy số dư của phép chia là 35
mạo mụi em lm lụi theo lời BÁC DƯƠNG dạy .
câu b)
\(2011\equiv16\left(mod57\right)\)
\(2011^2\equiv16^2\equiv28\left(mod57\right)\)
\(2011^7\equiv16^7\equiv55\left(mod57\right)\) \(2011^9\equiv28.55\equiv1\left(mod57\right)\) \(2011^{10}\equiv16.28.55\equiv16\left(mod57\right)\) \(2011^{50}\equiv16^5\equiv4\left(mod57\right)\) \(2011^{100}\equiv4^2\equiv16\left(mod57\right)\)\(\Rightarrow\) \(2011^{209}\equiv16.1\equiv16\left(mod57\right)\)
vậy số dư của phép chia là 16
chịu òi