Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta đặt mẫu chung là: abcd (a khác 0)
- Có 9 cách chọn a
- Có 9 cách chọn b
- Có 8 cách chọn c
- Có 7 cách chọn d
Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)
b) Ta đặt mẫu chung là: abcd
- Có 5 cách chọn a
- Có 4 cách chọn b
- Có 3 cách chọn c
- Có 2 cách chọn d
Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)
c) Ta lập dãy số: 1000; 1005; 1010;...; 9995
Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị
Áp dụng công thức dãy số cách đều, ta có số số hạng là:
(9995 - 1000) : 5 + 1 = 1800 (số)
d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)
Trường hợp d = 0
- Có 9 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)
Trường hợp d = 5
- Có 8 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)
Ta lập được là: 504 + 448 = 952 (số)
Đ/S
HT
Chia A thành 3 tập hợp:
B={1;4;7}; C={2;5;8}; D={0;3;6}
TH1: 2 số trong B, 2 số trong C
=>Có \(C^2_3\cdot C^2_3\cdot4!=216\left(cách\right)\)
TH2: 1 số trong B, 1 số trong C, số 0 và 1 số trong D
=>Có 3*3*1*2*3*3*2*1=324 cách
TH3: 1 số trong B, 1 số trong C, 2 số khác 0 trong D
=>Có 3*3*1*4!=216 cách
TH4: 3 số trong B, số 0
=>Có 3*3*2*1=18 cách
TH5: 3 số trong B, 1 số khác 0 trong D
=>Có 2*4!=24*2=48 cách
TH6: 3 số trong C, số 0
=>Có 3*3*2*1=18 cách
TH7: 3 số trong C, 1 số khác 0 trong D
=>Có 2*4!=48 cách
=>Có 216+324+216+18+48+18+48=888 cách
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
Gọi \(S=\left\{\overline{abc}\right\}\)
a có 5 cách chọn
b có 5 cách chọn
c có 4 cách chọn
=>S có 5*5*4=100 số
Gọi \(\overline{abc}\) là số chia hết cho 5
TH1: c=5
=>a có 4 cách và b có 4 cách
=>Có 16 cách
TH2: c=0
=>a có 5 cách và b có 4 cách
=>Có 5+4=20 cách
=>Có 16+20=36(cách)
\(n\left(\Omega\right)=C^2_{100}\)
\(n\left(B\right)=C^2_{36}\)
=>\(P\left(B\right)=\dfrac{7}{55}\)
Khi lập một số từ 1 tập sao cho chia hết cho 3 thì thường đầu tiên là ta sẽ chia tập hợp ban đầu thành 3 tập nhỏ theo số dư khi chia 3: tập B={0;3;6} gồm 3 phần tử là các số chia 3 dư 0, tập C={1;4} chia 3 dư 1, tập D={2;5} chia 3 dư 2
4 chữ số chia hết cho 3 khi tổng của nó chia hết cho 3, ta có các trường hợp: 2B+1C+1D (nghĩa là 2 phần tử thuộc B+1 phần tử thuộc C+1 phần tử thuộc D), 2C+2D
Chỉ có 2 cách trên là thỏa mãn
TH1: 2B1C1D:
- Nếu trong 2 phần tử B có xuất hiện số 0: có 2 cách chọn (02;06), chọn 1C có 2 cách, chọn 1D có 2 cách
Hoán vị 4 chữ số sao cho số 0 ko đứng đầu: 4!-3! cách
Tổng cộng theo quy tắc nhân: \(2.2.2.\left(4!-3!\right)=144\) số
- Nếu 2 phần tử B ko xuất hiện số 0: có 1 cách chọn (3;6), chọn 1C có 2 cách, 1D có 2 cách
Hoán vị 4 chữ số: \(4!\) cách
Tổng: \(1.2.2.4!=96\)
TH2: 2C2D có đúng 1 cách chọn 2 chữ số từ C và 2 chữ số từ D
Hoán vị 4 chữ số này: \(4!=24\) số
Vậy có: \(144+96+24=264\) số
Ủa em đã học tới tổ hợp chưa nhỉ? Chương trình mới là lớp 10 có học tổ hợp đúng ko?
TH1: chữ số tận cùng là 0
Chọn 1 chữ số khác 0 và 2: có 6 cách
Hoán vị 2 chữ số hàng trăm và chục: \(2!\) cách
\(\Rightarrow6.2=12\) số
TH2: chữ số tận cùng là 5
Chọn 1 chữ số khác 2 và 5:
- Nếu chữ số đó là 0: có 1 số \(205\) thỏa mãn
- Nếu chữ số đó khác 0: có 5 cách chọn, hoán vị nó với 2 có 2 cách \(\Rightarrow2.5=10\) số
Tổng cộng: \(12+1+10=23\) số
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
A = \(\left\{16780\right\}\)
{16780}