K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

45

 

19 tháng 8 2023

Ta có:

2n - Hai chữ số tận cùng

2- 02

22 - 04

23 - 08

24 - 16

25 - 32

26 - 64

27 - 28

28 - 56

29 - 12

210 - 24

211 - 48

212 - 96

213 - 92

214 - 84

215 - 68

216 - 36

217 - 72

218 - 44

219 - 88

220 - 76

221 - 52

222 - 04

223 - 08

... - ...

Đặt hai chữ số tận cùng của 21 là 52, hai chữ số tận cùng của 2n (với n = 1; 2; 3; ...) là:

52; 04; 08; 16; 32; 64; 28; 56; 12; 24; 48; 96; 92; 84; 68; 36; 72; 44; 88; 76; 52; 04; 08; ...

Vì 2023 : 20 dư 3 nên hai chữ số tận cùng của 22023 là 08.

Vậy số dư khi chia 22023 cho 100 là 8.

9 tháng 8 2023

Số hạng thứ 1 là 1.

Số hạng thứ 2 cũng là 1.

Số hạng thứ 3 cũng là 1.

Số hạng thứ 4 là 3, bằng tổng của 3 số hạng trước đó (1 + 1 + 1).

Số hạng thứ 5 = 1 + 1 + 3 = 5

Số hạng thứ 6 = 1 + 3 + 5 = 9

Số hạng thứ 7 = 3 + 5 + 9 = 17 .Và cứ tiếp tục như vậy.

Ta luôn nhận được dãy số sau: 1, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5,... Mẫu lặp lại này có độ dài là 4.

Vì vậy, ta có thể tính số dư khi chia 2023 cho 4

2023:4 dư 3 

Vậy số hạng thứ 2023 sẽ tương ứng với số hạng thứ 3 trong mẫu lặp. Tính số dư khi chia 3 cho 8, ta được kết quả là 3.

 

 

Bấm vào đây bạn nhé 

https://olm.vn/hoi-dap/question/110524.html

25 tháng 10 2017

Ở trong sách

11 tháng 8 2021

gọi số cần tìm là x 

vì x : 3  dư 2 => x + 1 ⋮ 3 

    x : 7 dư 6 => x + 1 ⋮ 7

    x : 25 dư 24 => x + 1 ⋮ 24

=> x + 1 thuộc BC(3;7;24) 

có 3 = 3 ; 7 = 7; 24 = 2^2.3

=> BCNN(3;7;24) = 3.7.2^2 = 84

=> x + 1 thuộc B(84)

=> x + 1 thuộc {0;84;168; ....}

=> x thuộc {-1; 83; 167;. ...}

mà x thuộc N và x nhỏ nhất

=> x = 83

vậy số cần tìm là 83

11 tháng 8 2021

chết mình ghi lộn cái xong tính lộn luôn

24 = 2^3.3

nên BCNN = 2^3.3.7 = 168 nhé :((

2 tháng 3 2016

Chia cho 45 dư 32

2 tháng 3 2016

nhờ trình bày với

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
Giả sử số $a$ có $n$ chữ số. Khi đó:
$\overline{2023a}=2023.10^n+a=2022.10^n+10^n+a$

Để $\overline{2023a}\vdots 2022$ thì $10^n+a\vdots 2022$

$\Rightarrow 10^n+a\geq 2022$

Nếu $a$ có 3 chữ số: $10^n+a\leq 10^3+999=1999$ (không thỏa mãn) (vô lý)

$\Rightarrow a$ phải có từ 4 chữ số trở lên

$\Rightarrow n\geq 4$.

Đặt $10^n+a=2022k$ với $k$ tự nhiên. Do $a$ có ít nhất 4 chữ số nên:
$2022k=10^n+a\geq 10^4+1000=11000$

$\Rightarrow k\geq 6$

Để $a$ nhỏ nhất thì $k$ nhỏ nhất, Suy ra $k=6$

$10^n+a=2022.6=12132$

$\Rightarrow n=4; a=2132$

Vậy số cần tìm là $2132$