K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

a) Để y là hàm số bậc nhất

\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)

b;c Tương tự.

30 tháng 7 2018

thanksvui

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3

15 tháng 7 2015

Ôi mình ko giỏi phấn cos sin cho lắm

4 tháng 5 2020

Áp dụng hệ thức Vi-et,ta có :

m + n = -b ( 1 ) 

mn = c ( 2 )

b + c = -m ( 3 )

bc = n ( 4 )

từ ( 1 ) và ( 3 ) suy ra c = n

thay vào ( 2 ) và ( 4 ), ta được b = m = 1

từ đó tìm được c = n = -2

Do đó b2 + c2 + m2 + n2 = 10

chi tiết bạn tự làm