Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
Để `x=1` là nghiệm của đa thức, `x=1` phải t/m giá trị của đa thức `=0`
`m*1^2+3*1+5 =0`
`m+3+5=0`
`m+8=0`
`=> m=0-8`
`=> m=-8`
Vậy, để đa thức nhận `x=1` là nghiệm, thì `m` thỏa mãn giá trị là `m=-8`
`b)`
Thay `x=1` vào đa thức:
`6*1^2+m*1-1`
` =6+m-1`
` =6-1+m`
`= 5+m`
`5+m=0`
`=> m=0-5`
`=> m=-5`
Vậy, để đa thức trên nhận `x=1` là nghiệm, thì `m` thỏa mãn giá trị `m=-5`
`c)`
Thay `x=1` vào đa thức:
`1^5-3*1^2+m`
`= 1-3+m`
`= -2+m`
`-2+m=0`
`=> m=0-(-2)`
`=> m=0+2`
`=> m=2`
Vậy, để `x=1` là nghiệm của đa thức thì giá trị của `m` thỏa mãn `m=2.`
`\text {#KaizuulvG}`
a: =>9(2x+1)=6(3-x)
=>3(2x+1)=2(3-x)
=>6x+3=6-2x
=>8x=3
=>x=3/8
b: =>-3x^2-2+3x^2-18x=-26
=>-18x=-24
=>x=4/3
Bài 1:
(x² - 8)(x³ + 2x + 4)
= x².x³ + x².2x + x².4 - 8.x³ - 8.2x - 8.4
= x⁵ + 2x³ + 4x² - 8x³ - 16x - 32
= x⁵ - 6x³ + 4x² - 16x - 32
Bài 2
a) A(x) = -5/3 x² + 3/4 x⁴ + 2x - 7/3 x² - 2 + 4x + 1/4 x⁴
= (3/4 x⁴ + 1/4 x⁴) + (-5/3 x² - 7/3 x²) + (2x + 4x) - 2
= x⁴ - 4x² + 6x - 2
b) Bậc của A(x) là 4
Hệ số cao nhất là 1
a) Tìm GTNN :A=|3x -2017|+6
B=1/2(3x-1/8)mũ 4 -1/6
b)Tìm GTLN :C=3-(x+1)mũ 2 -2|y-7|
D=16-(4x-3)mũ 2
a) Ý 1: Ta có:
/3x - 2017/ \(\ge\) 0 \(\forall\)x \(\in\) Z
=> /3x - 2017/ + 6 \(\ge\) 0 \(\forall\)x \(\in\) Z
=> A \(\ge\) 0 \(\forall\)x \(\in\) Z
Dấu "=" xảy ra khi /3x - 2017/ = 0
=> 3x - 2017 = 0
=> 3x = 2017
=> x = \(\frac{2017}{3}\)
Vậy GTNN của A = 6 khi x = \(\frac{2017}{3}\)
b) Lại có: -(4x - 3)2 \(\ge\) 0
=> 16 - (4x - 3)2 \(\ge\) 16 \(\forall\)x \(\in\) Z
=> D \(\ge\) 16 \(\forall\)x \(\in\) Z
Dấu "=" xảy ra khi (4x - 3)2 = 0
=> 4x - 3 = 0
=> 4x = 3 => x = \(\frac{3}{4}\)
Vậy GTLN của D = 16 khi x = \(\frac{3}{4}\).
a) Ta có:
A = (a - 1)x^3 + 4x^2 + 8x + 1
b) Ta có:
B = mx^4 - 3x^4 + 3
B = (m - 3)x^4 + 3
Vậy đáp án là:
a) A = (a - 1)x^3 + 4x^2 + 8x + 1
b) B = (m - 3)x^4 + 3