Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 6 8 H D I
a, Xét tam giác ABC vuông tại A, có AH là đường cao
Áp dụng định lí Py ta go ta có :
\(BC^2=AB^2+AC^2=36+64\)
\(\Rightarrow BC^2=100\Rightarrow BC=10\)cm
Vì BD là phân giác ^ABC nên
\(\frac{AB}{BC}=\frac{AD}{DC}\)(1) mà \(AD=AC-DC=8-DC\)
hay \(\frac{6}{10}=\frac{8-DC}{DC}\Rightarrow6DC=80-10DC\)
\(\Leftrightarrow16DC=80\Leftrightarrow DC=5\)cm
\(\Rightarrow AD=AC-DC=8-5=3\)cm
b, Xét tam giác BHA và tam giác BAC ta có
^BHA = ^A = 900
^B _ chung
Vậy tam giác BHA ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{BH}{BA}=\frac{AB}{BC}\) ( tỉ số đồng dạng ) (2)
Từ (1) và (2) \(\Rightarrow\frac{BH}{BA}=\frac{AD}{DC}\)(3)
xem lại đề đi nếu như thành \(\frac{IH}{AD}=\frac{IA}{DC}\)
sao lại có tam giác IHA được ? hay còn cách nào khác ko ?
a: BC=10cm
Xét ΔABC có BD là phân giác
nên DA/AB=DC/BC
=>DA/6=DC/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:DA=3cm; DC=5cm
b: Xét ΔBHA có BI là phân giác
nên IH/IA=BH/BA(1)
Xét ΔABC có BD là phân giác
nên AD/DC=BA/BC(2)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
hay BA/BC=BH/BA(3)
Từ (1), (2) và (3) suy ra IH/IA=AD/DC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)
\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)
mà AD+DC=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)
Vậy: AD=3cm; DC=5cm
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(AD=3\cdot1=3\left(cm\right);DC=5\cdot1=5\left(cm\right)\)
b: Xét ΔBAH có BI là phân giác
nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)
Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
góc ABH chung
Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABD}=\widehat{HBI}\)
Do đó: ΔBAD~ΔBHI
=>\(\dfrac{BA}{BH}=\dfrac{BD}{BI}\)
=>\(BA\cdot BI=BD\cdot BH\)
Ta có: ΔBAD~ΔBHI
=>\(\widehat{BDA}=\widehat{BIH}\)
mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)
nên \(\widehat{ADI}=\widehat{AID}\)
=>ΔAID cân tại A
b) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(Gt)
nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất đường phân giác của tam giác)(1)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)(2)
Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)(đpcm)
Dành cho anh em nào cần phần C nha
Xét ∆HIB và ∆AID có:
Góc IHB= góc IAD
Góc I( đối đỉnh)
Suy ra ∆HIB đồng dạng vs ∆ AID
Suy ra góc HBI = ADI
Mà tâm giác BIH vuông tại H nên Góc HBI = BIH
Mà hai góc I đối đỉnh nên góc HBI = AID
Mà góc HBI = ADI
Nên góc ADI = góc AID
Suy ra tâm giác AID cân (đpcm) (hơi dài nhỉ nhưng có cách ngắn nhưng nó sẽ không chi tiết mong ae thông cảm )
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔBAC có BD là phan giác
=>AD/AB=DC/BC
=>AD/3=DC/5=8/8=1
=>AD=3cm; DC=5cm
b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>AD/HI=BA/BH
=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID
=>ΔAID cân tại A
a, áp dụng định lí py-ta-go để tính cạnh BC
áp dụng đường phân giác BD suy ra tỉ số AD/AB=DC/BC
từ đó thay số vào và tính được AD và DC
b,Xét tam giác ABD và tam giác HBI có :
BAD=BHI (=90 độ)
B1=B2(p/g)
suy ra : 2 tam giác đồng dạng và lập tỉ số AB/BD=HB/BI
suy ra :AB.BI=BD.HB(đccm)
c,Vì trong tam giác ABD có :góc BDA + B1 =90dộ
BIH có :góc BIH +B2 +90độ
mà B1=B2
suy ra :góc BDA =AID . Suy ra tam giác AID cân tại A .
A) Theo định lý Py-ta-go trong tam giác ABC vuông tại A ta có :
\(BC^2=AB^2+AC^2\)\(\Leftrightarrow BC^2=6^2+8^2=100\)\(\Leftrightarrow BC=\sqrt{100}=10\)
Do BD là đường phân giác của góc \(\widehat{D}\)nên ta có tỉ lệ : \(\frac{AD}{DC}=\frac{AB}{BC}\)
theo tính chất tỉ lệ thức ta có : \(\frac{AD}{DC+AD}=\frac{AB}{BC+AB}\)hay \(\frac{AD}{8}=\frac{6}{14}\)\(\Rightarrow AD=\frac{6\cdot8}{14}\approx3,43\)
\(\Rightarrow DC=AC-AD=8-3,43=4,57\)
B) Xét \(\Delta BIH\)và \(\Delta ABD\)có : \(\widehat{BAD}=\widehat{BHI}\)và \(\widehat{ABD}=\widehat{IBH}\)(Do BD là đường phân giác của góc D)
\(\Rightarrow\Delta BHI\)\(\infty\) \(\Delta BAD\)(g.g) ; Ta được tỉ lệ : \(\frac{BH}{AB}=\frac{BI}{BD}\)\(\Rightarrow AB\cdot BI=BH\cdot BD\left(đpcm\right)\)
C) C\m theo tam giác có hai cạnh bên bằng nhau là tam giác cân
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AD/DC=BA/BC=6/10=3/5
b: Xét ΔHBA vuông tạiH và ΔABC vuôg tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
màgóc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
A A B C H D I
a) Vì tam giác ABC vuông tại A
Áp dụng định lý Pytago :
AB2 + AC2 = BC2
<=> 62 + 82 = BC2
<=> BC = 10
BD tia phân giác góc B nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\)(1)
mà AD + DC = AC = 8 (2)
Từ (1)(2) ta tìm được AD = 3 ; DC = 5
=> P = AD.DC = 3.5 = 15
b) Mà \(BD\cap AH=\left\{I\right\}\)
\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)(3)
Xét tam giác ABH và tam giác ABC có
\(\widehat{ABC}\) chung ; \(\widehat{AHB}=\widehat{BAC}=90^{\text{o}}\)
nên \(\Delta CBA\sim\Delta ABH\)
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\)( kết hợp (1);(3))
c) Tương tự dễ thấy
\(\Delta BIH\sim\Delta BDA\) (g-g)
=> \(\widehat{BDA}=\widehat{BIH}\)
lại có \(\widehat{BIH}=\widehat{AID}\) (đối đỉnh)
nên \(\widehat{BDA}=\widehat{AID}\) => Tam giác AID cân tại A
a) Xét tam giác ���ABC vuông tại �A:
��2=��2+��2BC2=AB2+AC2 (định lí Pythagoras)
⇔��2=62+82=100⇔��=10(��)⇔BC2=62+82=100⇔BC=10(cm).
Xét tam giác ���ABC phân giác ��BD có:
����=����⇔����+��=����+��BCAB=DCAD⇔BC+ABAB=DC+ADAD
����=����+��⇔��=3(��)ACAD=BC+ABAB⇔AD=3(cm)
suy ra ��=5(��)DC=5(cm).
b) Xét tam giác ���ABH phân giác ��BI có: ����=����IAIH=ABHB.
Xét △���△HBA và △���△ABC có:
���^=���^HBA=ABC (góc chung)
���^=���^(=90∘)BHA=BAC(=90∘)
suy ra △���∼△���△HBA∼△ABC (g.g).
Suy ra ����=����ABHB=BCBA
⇒����=����⇒BCBA=IAIH.
Mà ta lại có ����=����BCAB=DCAD nên ����=����IAIH=DCAD.
c) Ta có △���∼△���△ABD∼△HBI (g.g)
suy ra ����=����⇒��.��=��.��HBAB=BIBD⇒AB.BI=BD.HB.
���^=���^BDA=BIH (hai góc tương ứng)
mà ���^=���^BIH=AID (hai góc đối đỉnh)
suy ra ���^=���^BDA=AID
do đó tam giác ���AID cân tại �A.