Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
C1: (a - b + c)2 = (a - b + c) (a - b + c)
= a (a - b + c) - b (a - b + c) +c (a - b + c)
= a2 - ab + ac - ab + b2 - bc + ac - bc + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
C2: (a - b + c)2 = [ (a - b) + c ]2
= (a - b)2 + 2c (a - b) + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
b,
C1: (a + b + c)(a + b - c) = a (a + b - c) + b (a + b - c) + c (a + b - c)
= a2 + ab - ac + ab + b2 - bc + ac + bc - c2
= a2 + 2ab + b2 - c2
C2: (a + b + c)(a + b - c) = [ (a + b) + c ] [ ( a+ b) - c ]
= (a + b)2 - c2
= a2 + 2ab + b2 - c2
hok tốt ~
Các hàng đẳng thức lớp 7 đc học là ;
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(a^2-b^2=\left(a+b\right).\left(a-b\right)\)
Vì câu hỏi ghi toán 7 nên chỉ có thế thôi chưa học đâu
7 hằng đẳng thức đáng nhớ là :
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
~ Hok tốt ~
1. (A+B)2 = A2+2AB+B2
2. (A – B)2= A2 – 2AB+ B2
3. A2 – B2= (A-B)(A+B)
4. (A+B)3= A3+3A2B +3AB2+B3
5. (A – B)3 = A3- 3A2B+ 3AB2- B3
6. A3 + B3= (A+B)(A2- AB +B2)
7. A3- B3= (A- B)(A2+ AB+ B2)
8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC
1, -x3+3x2-3x+1
=1-3x.12+3.1.x2-x3
=(1-3x)3
bài này là hằng đẳng thức số 5: (a-b)3=a3-3a2b+3ab2-b2
3, ta có:
x3+8y3=x3+(2y)3=(x+2y)(x2-2xy+4y2
đây là hằng đẳng thức số 6
Ta có: \(\left(a+2b-3c-d\right)\left(a+2b+3c+d\right)\)
\(=\left[\left(a+2b\right)-\left(3c+d\right)\right]\cdot\left[\left(a+2b\right)+\left(3c+d\right)\right]\)
\(=\left(a+2b\right)^2-\left(3c+d\right)^2\)
\(=a^2+4ab+4b^2-9c^2-6cd-d^2\)
( a + 2b - 3c - d )( a + 2b + 3c + d )
= [ ( a + 2b ) - ( 3c + d ) ][ ( a + 2b ) + ( 3c + d ) ]
= ( a + 2b )2 - ( 3c + d )2
= a2 + 4ab + 4b2 - ( 9c2 + 6cd + d2 )
= a2 + 4ab + 4b2 - 9c2 - 6cd - d2
Ngoài những hằng đẳng thức cơ bản trong sgk, còn có những hằng đẳng thức hay được sử dụng trong các bài toán như sau:
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
(13) an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)
(14) Với n lẻ:
an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)
(15) Nhị thức Newton:
(a+b)n=an+n!(n−1)!1!an−1b+n!(n−2)!2!an−2b2+...+n!(n−k)!k!an−kbk+...+n!2!(n−2)!a2bn−2+n)!1!(n−1)!abn−1+bn
Các hằng đẳng thức mở rộng thì nhiều nhưng quan trọng phải nhớ tốt mà biết vận dụng linh hoạt.
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
(a + b - c)² = a² + b² + c² + 2ab - 2ac - 2bc
(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd
(a + b + c)³ = a³ + b³ + c³ + 3(a + b)(a + c)(b + c)
a³ + b³ = (a + b)³ - 3ab(a + b)
a³ - b³ = (a - b)³ + 3ab(a - b)
a^n + b^n = (a + b)( a^(n - 1) - a^(n - 2)b + ... + b^(n - 1) )
a^n - b^n = (a - b)( a^(n - 1) + a^(n - 2)b + ....+b^(n - 1) )
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - ac - bc)
1 binh phuong cua mot tong
2 binh phuong cua mot hieu
3 hieu 2 binh phuong
4 lap phuong cua mot tong
5 lap phuong cua mot hieu
6 tong 2 lap phuong
7 hieu hai lap phuong
a) Nếu lãi suất kép là 6% mỗi năm thì khoản đầu tư sẽ tăng gấp đôi trong số năm là:
72 : 6 = 12 (năm).
b) Để tăng gấp đôi số tiền sau 5 năm thì lãi suất kép của khoản đầu tư đó là:
72 : 5 = 14,4.
Vậy để thu được lợi nhuận như mong muốn thì lãi suất kép của khoản đầu tư đó là 14,4% mỗi năm.
1. ( A + B ) = A^2 + 2.A.B + B^2
2. ( A - B ) = A^2 - 2.A.B + B^2
3. A^2 - B^2 = ( A + B ).(A - B )
4. ( A + B )^3 = A^3 + 3A^2B + 3AB^2 + B^3
5. ( A - B )^3 = A^3 - 3A^2B + 3AB^2 - B^3
6. A^3 + B^3 = ( A + B ).( A^2 - AB + B^2 )
7. A^3 - B^3 = ( A - B ).( A^2 + AB + B^2 )
Có trong 1 số ít quyển vở mỏng