Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(A=5+5^2+5^3+...+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{29}\right)\)
\(=6\left(5+5^3+...+5^{29}\right)⋮6\) (đpcm)
Bài giải
\(5+5^2+5^3+5^4+...+5^{29}+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)
\(=6\left(5+5^3+...+5^{29}\right)\text{ }⋮\text{ }6\)
\(\Rightarrow\text{ ĐPCM}\)
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
Cho biết nền của một phòng học là một hình chữ nhật có chiều dài 8m và chiều rộng 6m. Để lát kín nền cần sử dụng bao nhiêu viên gạch hình vuông có cạnh dài 50 cm? (Chỉ dùng những viên gạch nguyên vẹn và coi mạch vữa là không đáng kể) giúp lẹ đựt hong mấy pạn kute ( giải cả lời bài văn nhé )
\(A=2+2^2+2^3+...+2^{20}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{19}\right)⋮3\)
\(A=2+2^2+2^3+...+2^{20}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{17}\right)⋮5\)
a) P = 5 + 5² + 5³ + ... + 5²⁰
= 5(1 + 5 + 5² + ... + 5¹⁹) ⋮ 5
Vậy P ⋮ 5
b) P = 5 + 5² + 5³ + ... + 5²⁰
= 5.(1 + 5) + 5³.(1 + 5) + ... + 5¹⁹.(1 + 5)
= 6.(5 + 5³ + ... + 5¹⁹) ⋮ 6
Vậy P ⋮ 6
c) P = 5 + 5² + 5³ + 5⁴ + ... + 5¹⁷ + 5¹⁸ + 5¹⁹ + 5²⁰
= 5.(1 + 5 + 5² + 5³) + ... + 5¹⁷.(1 + 5 + 5² + 5³)
= 5.156 + ... + 5¹⁷.156
= 156.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷)
= 13.12.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷) ⋮ 13
Vậy P ⋮ 13
a: P=5(1+5+5^2+...+5^19) chia hết cho 5
b: P=5(1+5)+5^3(1+5)+...+5^19(1+5)
=6(5+5^3+...+5^19) chia hết cho 6
c: P=5(1+5+5^2+5^3)+...+5^17(1+5+5^2+5^3)
=156(5+5^5+5^9+5^13+5^17) chia hết cho 13
1: \(78+22+18\)
\(=\left(78+22\right)+18\)
=100+18
=118
2: \(94+563+\left(106-563\right)-\left(-70\right)\)
\(=94+563+106-563+70\)
\(=\left(94+106\right)-\left(563-563\right)+70\)
=100-0+70
=170
3: \(25\cdot154-25+47\cdot25\)
\(=25\left(154-1+47\right)\)
\(=25\cdot200=5000\)
4: \(\left[5^{29}+5^{30}\left(16-11\right)\right]:5^{29}\)
\(=\left(5^{29}+5^{30}\cdot5\right):5^{29}\)
\(=\dfrac{5^{29}\cdot1+5^{29}\cdot5^2}{5^{29}}\)
\(=1+5^2=26\)
8: \(25\cdot2^3-\left(9-14\right)+\left(29-34+20\right)\)
\(=25\cdot8-\left(-5\right)+\left(-5\right)+20\)
\(=200+5-5+20\)
=220
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
\(A=5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9\)
\(A=5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9\)
\(A=5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}\)
\(A=5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}\)
\(A=2^{29}\cdot3^{18}\cdot\left(5\cdot2^1\cdot1-1\cdot3^2\right)\)
\(A=2^{29}\cdot3^{18}\cdot\left(5-9\right)\)
\(A=-2^2\cdot2^{29}\cdot3^{18}\)
\(A=-2^{31}\cdot3^{18}\)
_______________
\(B=5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6\)
\(B=5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6\)
\(B=5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}\)
\(B=2^{28}\cdot3^{18}\cdot\left(5\cdot1\cdot3-7\cdot2\cdot1\right)\)
\(B=2^{28}\cdot3^{18}\cdot\left(15-14\right)\)
\(B=2^{28}\cdot3^{18}\)
Ta có: \(A:B\)
\(=\left(-2^{31}\cdot3^{18}\right):\left(2^{28}\cdot3^{18}\right)\)
\(=\left(-2^{31}:2^{28}\right)\cdot\left(3^{18}:3^{18}\right)\)
\(=-2^3\cdot1\)
\(=-8\)
bạn viết sai đề 5+5^1
\(A=\left(1+5^2\right)+\left(5+5^3\right)+...+\left(5^{18}+5^{20}\right)\)
\(A=26+5.\left(1+5^2\right)+...+5^{18}.\left(1+5^2\right)\)
\(A=26+5.26+...+5^{18}.26\)
\(A=26.\left(1+5+...+5^{18}\right)⋮13\)
5+ 5^1 +5^2 +5^3 +....+5^20
=( 5^1 +5^2+5^3+5^4 )+...+ ( 5^17 + 5^18 +5^19 + 5^20 )
= 5. ( 1 +5 + 5^2 + 5^3 ) +...+ 5^17. (1 + 5 +5^2 + 5^3 )
= ( 5+ ... + 5^17) . ( 1 +5 +5^2 + 5^3 )
=( 5+ ...+5^17) .156
chia hết cho 13 vì 156 chia hết cho 13 ( đpcm)
520:529= 520-29= 5-9
\(5^{20}-5^{29}=5^{20-29}=5^{-9}\)