Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(k\) là \(ƯCLN\left(2n+1,3n+1\right)\)
Khi đó:
\(\left\{{}\begin{matrix}2n+1⋮k\\3n+1⋮k\end{matrix}\right.\)
\(\Rightarrow\left(3n+1\right)-\left(2n+1\right)⋮k\)
\(\Rightarrow1⋮k\) hay \(k=1\) (đpcm)
Gọi d là ƯCLN(2n+1;3n+1)
Ta có:2n+1 chia hết cho d
3n+1 chia hết cho d
Suy ra (3n+1)-(2n+1) chia hết cho d
Suy ra 3n-2n chia hết cho d
Suy ra 1 chia hết cho d
Suy ra 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
gải:
ta gọi x là ƯCLN của 2n+1 và 3n+1
suy ra: (2n+1) chia hết cho x
(3n+1) chia hết cho x
suy ra: [3(2n+1)-2(3n+1)] chia hết cho x
hay 1 chia hết cho x
suy ra: x e Ư(1)
Ư(1)={1}
do đó x=1
nên ƯCLN(2n+1;3n+1)=1
vì ƯCLN của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)
Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)
Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.
Ta có 2n+1 =6n+3
3n+2=6n+4
gọi d là ước của 6n+3 và 6n+4
Ta có (6n+3)-(6n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1
vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau
Gọi d là ước chung lớn nhất của 2n+1 và 3n+1 ta được:
\(\left\{{}\begin{matrix}\left(2n+1\right)⋮d\\\left(3n+1\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+3\right)⋮d\\\left(6n+2\right)⋮d\end{matrix}\right.\Rightarrow\left[\left(6n+3\right)-\left(6n+2\right)\right]⋮d\)
\(\Rightarrow\left(6n+3-6n-2\right)⋮d\Rightarrow1⋮d\)
Do đó: \(d=\pm1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)
Vậy \(2n+1\) và \(3n+1\) là nguyên tố cùng nhau.
Gọi d là ƯCLN(2n+1,3n+1)
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=\pm1\)
=> ƯCLN(2n+1,3n+1)=1
=> đpcm
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Gọi d là ước chung lớn nhất của 2n + 1 và 3n + 1.
Ta có:
Do đó d = ±1
Do đó: ƯCLN (2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 nguyên tố cùng nhau.
Học tốt nhé!
Gọi d là ước chung lớn nhất của 2n + 1 và 3n + 1.
Ta có:
Do đó d = ±1
Do đó: ƯCLN (2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 nguyên tố cùng nhau.
Chúc bạn học tốt!