K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2015

\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab=\left(a^3-b^3-3a^2b+3ab^2\right)+\left(a^2-2ab+b^2\right)=\left(a-b\right)^3+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a-b+1\right)\)

phân tích thành nhân tử rồi đó. ngta cho a-b= bao nhiêu thì mới tính 

\(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

=1

26 tháng 9 2021

\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)

23 tháng 12 2021

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)

Thay a + b = 1 vào biểu thức trên ,có :

1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1

=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2

=1

Vậy biểu thức M có giá trị bằng 1 khi a + b = 1

DS
23 tháng 11 2023

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1
nhwos tick nha :D

24 tháng 11 2023

�=�3+�3+3��(�2+�2)+6�2�2(�+�)

Biến đổi:

�2+�2=�2+2��+�2−2��=(�+�)2−2��

�3+�3=(�+�)(�2−��+�2)

Thay �+�=1 và phần biến đổi vào biểu thức, ta được:

�=(�+�)(�2−��+�2)+3��.[(�+�)2−2��]+6�2�2

⇒�=�2−��+�2+3��.[1−2��]+6�2�2

⇒�=�2−��+�2+3��−6�2�2+6�2�2

⇒�=�2+2��+�2

⇒�=(�+�)2

 

7 tháng 11 2023

M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2

M=a2-ab+b2+3ab

M=(a+b)2=1

19 tháng 6 2018

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1

27 tháng 7 2021

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)M=a3+b3+3ab(a2+b2)+6a2b2(a+b)

=(a+b)(a2−ab+b2)+3ab(a2+b2+2ab)=(a+b)(a2−ab+b2)+3ab(a2+b2+2ab)

=(a2−ab+b2)+3ab(a+b)2=(a2−ab+b2)+3ab(a+b)2

=a2−ab+b2+3ab=a2−ab+b2+3ab

=a2+2ab+b2=a2+2ab+b2

=(a+b)2=1

12 tháng 11 2017

a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.

b) N = 8 a 3   -   27 b 3   =   ( 2 a ) 3   -   ( 3 b ) 3 = ( 2 a   -   3 b ) 3  + 3.2a.3b.(2a - 3b)

Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.

c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.

Thực hiện rút gọn K, ta có kết quả K = 1.

Cách 2: Tìm cách đưa biêu thức về dạng a + b.

a 3   +   b 3   =   ( a   +   b ) 3  – 3ab(a + b) = 1 - 3ab;

6 a 2 b 2 (a + b) = 6 a 2 b 2  kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2  + 2ab + b 2 ) = 3ab.

Thực hiện rút gọn K = 1.

14 tháng 12 2020

\(a^2+b^2=2\left(8+ab\right)\)

=> \(a^2-2ab+b^2=16\)

=> \(\left(a-b\right)^2=16\)

=> a - b = 4 hoặc a - b = -4

Mà a < b

=> a - b < 0

=> a - b = -4

=> a = - 4 + b

Khi đó

\(P=\left(b-4\right)^2\left(-4+b\right)-b^2\left(b-1\right)-3\left(-4+b\right)\left(-4+1\right)+64\)

\(=\left(b^2-8b+16\right)\left(-4+b\right)-b^3+1-9\left(b-4\right)+64\)

\(=-4b^2+32b-64+b^3-8b^2+16b-b^3+1-9b+36+64\)

\(=-12b^2+49b+37\)

Chịu rồi! tách được thì tách không tách được chắc sai :v

 

17 tháng 10 2021

a,= a\(^2\)+2a+b\(^2\)-2b-2ab+37

=a\(^2\)-2ab+b\(^2\)+2a-2b+37

=(a-b)\(^2\)+2(a-b)+37

⇒5\(^2\)+2.5+37= 25+10+37= 72

b,= a\(^3\)+a\(^2\)-b\(^3\)+b\(^2\)+ab-3a\(^2\)b+3ab\(^2\)-3ab-95

=a\(^3\)-3a\(^2\)b+3ab\(^2\)-b\(^3\)+a\(^2\)-2ab+b\(^2\)-95

=(a-b)\(^3\)+(a-b)\(^2\)-95

⇒5\(^3\)+5\(^2\)-95= 125+25-95= 60

 

11 tháng 3 2018

Ta có

D   =   a ( b 2   +   c 2 )   –   b ( c 2   +   a 2 )   +   c ( a 2   +   b 2 )   –   2 a b c     =   a b 2   +   a c 2   –   b c 2   –   b a 2   +   c a 2   +   c b 2   –   2 a b c     =   ( a b 2   –   a 2 b )   +   ( a c 2   –   b c 2 )   +   ( a 2 c   –   2 a b c   +   b 2 c )     =   a b ( b   –   a )   +   c 2 ( a   –   b )   +   c ( a 2   –   2 a b   +   b 2 )     =   - a b ( a   –   b )   +   c 2 ( a   –   b )   +   c ( a   –   b ) 2     =   ( a   –   b ) ( - a b   +   c 2   +   c ( a   –   b ) )     =   ( a   –   b ) ( - a b   +   c 2   +   a c   –   b c )     =   ( a   –   b ) [ ( - a b   +   a c )   +   ( c 2   –   b c ) ]

= (a – b)[a(c – b) + c(c – b)]

= (a – b)(a + c)(c – b)

Với a = 99; b = -9; c = 1, ta có

D = (99 - (-9))(99 + 1) (1 - (-9)) = 108.100.10 = 108000

Đáp án cần chọn là: B

10 tháng 6 2021

mới ăn miếng cơm cà ngon nhức nách luôn ai thèm cơm cà không điểm danh nào

NV
22 tháng 5 2020

\(A=\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge\frac{4}{2+a^2+b^2+6ab}=\frac{4}{2+\left(a+b\right)^2+4ab}\ge\frac{4}{2+\left(a+b\right)^2+\left(a+b\right)^2}=1\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)