K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2022

Ta có: \(x+y+z+t=0\)

\(\Rightarrow t=-\left(x+y+z\right)\)

\(VT=x^3+y^3+z^3+t^3\)

\(=x^3+y^3+z^3-\left(x+y+z\right)^3\)

\(=x^3+y^3+z^3-\left[x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)\right]\)

\(=-3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(VP=3\left[xy+z\left(x+y+z\right)\right]\left(z-x-y-z\right)\)

\(=3\left(xy+yz+zx+z^2\right)\left(-x-y\right)\)

\(=-3\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

\(\Rightarrow VT=VP\)

7 tháng 7 2022

x+y+z+t=0

<=> t= - (x+y+z)

<=> t= - (x+y+z)3

<=> t= - x3- y3- z3 - 3(x+y)(y+z)(z+x)

=>  x3+y3+z3+t3 = x3+y3+z3 + (- x3- y3- z3 - 3(x+y)(y+z)(z+x))

=> 3(y+z)(xt-yz) = -3(x+y)(y+z)(z+x)

=>xt-yz= (x+y)(z+x)

=> x2+xy+xz+xt=0

=> x(x+y+z+t)=0 luôn đúng => đpcm 

15 tháng 5 2022

Đặt \(y+z=p\)

Khi đó \(M=\left(x+p\right)^3+\left(x-p\right)^3\)\(=x^3+3x^2p+3xp^2+p^3+x^3-3x^2p+3xp^2-p^3\)\(=2x^3+6xp^2=2x^3+6x\left(y+z\right)^2=N\) (vì \(y+z=p\))

 Từ đó ta có đpcm.

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

22 tháng 11 2016

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 

22 tháng 11 2016

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 

5 tháng 7 2017

Ace Legona giúp vs ạ bài 1 thui cx đc

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

Ta có: \(\left\{\begin{matrix} xy+x+y=3\\ yz+y+z=8\\ zx+z+x=15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(y+1)=4\\ (y+1)(z+1)=9\\ (z+1)(x+1)=16\end{matrix}\right.(1)\)

Nhân 3 vế với nhau:

\(\Rightarrow [(x+1)(y+1)(z+1)]^2=4.9.16\)

\(\Leftrightarrow (x+1)(y+1)(z+1)=\pm 24\)

Nếu \((x+1)(y+1)(z+1)=24(2)\)

Từ \((1),(2)\Rightarrow \left\{\begin{matrix} z+1=6\\ x+1=\frac{8}{3}\\ y+1=\frac{3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{5}{3}\\ y=\frac{1}{2}\\ z=5\end{matrix}\right.\)

Do đó, \(P=x+y+z=\frac{43}{6}\)

Nếu 

\((x+1)(y+1)(z+1)=-24(3)\)

Từ $(1);(3)$ suy ra \(\left\{\begin{matrix} z+1=-6\\ x+1=\frac{-8}{3}\\ y+1=\frac{-3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} z=-7\\ x=-\frac{11}{3}\\ y=\frac{-5}{2}\end{matrix}\right.\)

Do đó, \(P=x+y+z=-\frac{79}{6}\)

 

14 tháng 4 2018

Thưa thầy. Hình như phải xét 2 trường hợp chứ ạ?