Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
\(x^2+y^2=0\)
Mà \(x^2\ge0;y^2\ge0\)nên \(x^2+y^2\ge0\)
(Dấu "="\(\Leftrightarrow x=y=0\))
a) \(xy+x-y=2\)
\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)
b) \(x-2xy+y=0\)
\(\Leftrightarrow2x-4xy+2y=0\)
\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Tương tự nha
c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)
\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Từ đề bài \(\Rightarrow\left(x^2+2xy+y^2\right)-2x-2y+1+y^2-4y+4=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+y^2-4y+4=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2=0\)
Lập luận tìm được \(x=-1;y=2\) thay vào A (tự tính)
a) x2 - 2x + y2 + 1 = 0
<=> (x - 1)2 + y2 = 0
<=> x - 1 = 0 và y = 0 <=> x = 1 và y = 0
Vậy S = {(1; 0)}
b) -2x2 + 4x - y2 - 2y - 3 = 0
<=> -2(x - 1)2 - (y - 1)2 = 0
<=> 2(x - 1)2 + (y - 1)2 = 0
<=> x - 1 = 0 và y - 1 = 0 <=> x = 1 và y = 1
Vậy S = {(1; 1)}
c) x2 + 2y2 - 2xy + 2x - 6y + 5 = 0
<=> (x - y)2 + 2(x - y) + 1 + (y - 2)2 = 0
<=> (x - y + 1)2 + (Y - 2)2 = 0
<=> x - y + 1 = 0 và y - 2 = 0
<=> y = 2 và x = -1
Vậy S = {(-1 ; 2)}