Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8=2^3\)
\(16=4^2\)
\(27=3^3\)
\(81=9^2\)
\(100=10^2\)
b) \(1000=10^3\)
\(1,000,000=10^6\)
\(1,000,000,000=10^9\)
100.000 } 12 chữ số 0 = 10^12
Sử dụng đồng dư:
Trước hết ta thấy dó n5 và n có chung chữ số tận cùng nên \(n^5\equiv n\left(mod10\right)\forall n.\)
Gọi x là số cần tìm, a là số tự nhiên thỏa mãn: \(x=a^5.\) Theo lập luận bên trên, do x có tận cùng là 4 nên a cũng có tận cùng là 4.
Vậy thì \(1000000004\le a^5\le9999999994\Rightarrow63< a< 100\)
Do a có tận cùng là 4 nên a = 64, 74 , 84, 94. Vậy x = 1073741824; 2219006624; 4182119424; 7339040224.
8=2^3 ; 20=20^1 ; 60=60^1 ; 90=90^1
16=2^4 ; 27=3^3 ; 81=3^4 ; 100=10^2
Các bạn nhớ lại các kết quả ở bài tập 58 và 59 để làm bài tập này.
Các số có thể viết dưới dạng lũy thừa của một số tự nhiên với số mũ lớn hơn 1 là: 8, 16, 27, 64, 81, 100.
8 = 23
16 = 24 = 42
27 = 33
64 = 26 = 43 = 82
81 = 34 = 92
100 = 102
Các số 20, 60, 90 không thể viết được dưới dạng lũy thừa của một số tự nhiên với số mũ lớn hơn 1.
Để ý rằng 4^5 = 1024 nên ta có : 10^3 < 4^5 < 11.10^2
---> 10^15 < 4^25 < (11^5).10^10 < 200000.10^10 = 2.10^15
---> 10^30 < 4^50 < 4.10^30 < 10^31 ---> 4^50 có 31 chữ số.
---> 4^50 = m.10^30 (với 1 < m < 4)
Lại để ý rằng (4^50)(25^50) = 100^50 = 10^100
---> 25^50 = 10^100 / 4^50 = (10.10^99) / (m.10^30) = (10/m).10^69
Vì 1 < m < 4 ---> 2,5 < 10/m < 10
---> 25^50 = (10/m).10^69 có 70 chữ số.
---> Đáp án bài này là 31 + 70 = 101 chữ số.
---------------------------------------...
Nếu đã học về logarit thì bài này quá đơn giản !
log(4^50) = 50log4 = 30,1030 ---> 4^50 có 31 chữ số
log(25^50) = 50log25 = 69,8970 ---> 25^50 có 70 chữ số
---> đáp án là 101 chữ số.
4100 = (42)50 = 1650 tận cùng là 6