K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

1+1+1+1+1+1+1+1+1+1+1+1+1=13nha.

Chúc bạn học tốt nha!

26 tháng 3 2016

=1/2 . 2/3 ....1999/2000

=1.2....1999/2.3...2000

1/2000

26 tháng 3 2016

 

B= 3/2.4/3. ....2001/2000

B = 3.4....2001/2.3....2000

B =2001/2

22 tháng 4 2016

A=1/21+1/22+1/23+...+1/40(có 20 phân số)

A<1/20+1/20+1/20+..+1/20(có 20 phân số)

A<20/20=1(1)

A>1/40+1/40+1/40+...+1/40(có 20 phân số)

A>20/40=1/2(2)

từ (1);(2) ta kết luận 1/2<A<1(câu 1)

dễ thấy A=.1/2+1/2^2+1/2^3+...+1/2^200

             A<1/1*2+1/2*3+...+1/200*201

              A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/200-1/201

             A<1-1/201<1

            A<1

KL:0<A<1

 

22 tháng 4 2016

thanks bạn nhahaha

15 tháng 8 2017

Tính:\(A=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{10000}\right)\)\(=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)\(=\dfrac{3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{99.101}{100^2}\)

\(=\dfrac{2.3.4...99}{2.3.4...100}.\dfrac{3.4.5.6...101}{2.3.4...100}\)

\(=\)\(\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)

19 tháng 12 2023

Khó thí

23 tháng 2 2016

Ta có thể làm cách khác:

(1+1/2)*(1+1/3)*(1+1/4)*...*(1+1/98)*(1+1/99)

= 3/2 x 4/3 x 5/4 x ... x 99/98 x 100/99 (giản ước ta được)

= 100/2 = 50

23 tháng 2 2016

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{100}{99}=\frac{100}{2}=50\)

6 tháng 3 2016

12/125hihi

6 tháng 3 2016

đáp số là 12/125

 

12 tháng 4 2016

A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)

 

20 tháng 4 2016

tick đi mình giải cho

 

 

27 tháng 4 2016

A=\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)

  =1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12

  =1/5-1/12

  =7/60

Dấu chấm là dấu nhân nhé bạn

27 tháng 4 2016

A=1/30+1/42+1/56+1/72+1/90+1/110+1/132

A=1/5*6+1/6*7+1/7*8+1/8*9+1/9*10+1/10*11+1/11*12

A=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12

A=1/5-1/12

A=7/60

17 tháng 3 2016

1-1/2+1/2-1/3+1/3-1/4+1/4-1/5

=(1-1/5)+(1/2-1/2)+(1/3-1/3)+(1/4-1/4)

=(5/5-1/5)+0+0+0=4/5

17 tháng 3 2016

Tại bấm máy tính mà ra

20 tháng 3 2016

Ta có, với \(n\) nguyên dương: \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)

Suy ra, \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Khi đó: 

\(1-\frac{1}{1+2}=\frac{1.4}{2.3}\)

\(1-\frac{1}{1+2+3}=\frac{2.5}{3.4}\)

....

\(1-\frac{1}{1+2+...+2013}=\frac{2012.2015}{2013.2014}\)

\(1-\frac{1}{1+2+...+2014}=\frac{2013.2016}{2014.2015}\)

Suy ra, \(P=\frac{\left(1.2.....2013\right).\left(4.5.....2016\right)}{2.\left(3.4.....2014\right)^2.2015}=\frac{2016}{3.2014}=\frac{336}{1007}\)

20 tháng 3 2016

Tính ra sau đó rút gọn đi, thử coi sao.

23 tháng 2 2016

xét: Sn = 1 + 2 + 3 + 4 + ... + n (1) 
=> Sn = n + (n-1) + .. + 2 + 1 (2) 
thấy 1+n = 2 + (n-1) = 3+(n-2) = n-1 + 2 = n+1 
lấy (1) + (2) và với chú ý trên ta có: 
2.Sn = (n+1) + (n+1) +..+ (n+1) = n(n+1) (vì n số hạng giống nhau) 
=> Sn = n(n+1)/2 => Sn /n = (n+1)/2 

=> P = 1 + S2/2 + S3/3 + S4/4 +...+ Sn /n 

P = 1 + 3/2 + 4/2 + 5/2 +.. + (n+1)/2 

P = 2(2 + 3 + 4 + ... + n + n+1) = 2(1+2 +..+ n+1) - 2 = 2.S(n+1) - 2 

P = 2.(n+1)(n+2)/2 - 2 = (n+1)(n+2) - 2 = n²+3n 

Bài toán chỉ tính đến S16/16 (tức n = 16) 
P = 16² + 3.16 = ...

14 tháng 3 2016

xét: Sn = 1 + 2 + 3 + 4 + ... + n (1)
=> Sn = n + (n-1) + .. + 2 + 1 (2)
thấy 1+n = 2 + (n-1) = 3+(n-2) = n-1 + 2 = n+1
lấy (1) + (2) và với chú ý trên ta có:
2.Sn = (n+1) + (n+1) +..+ (n+1) = n(n+1) (vì n số hạng giống nhau)
=> Sn = n(n+1)/2 => Sn /n = (n+1)/2

=> P = 1 + S2/2 + S3/3 + S4/4 +...+ Sn /n

P = 1 + 3/2 + 4/2 + 5/2 +.. + (n+1)/2

P = 2(2 + 3 + 4 + ... + n + n+1) = 2(1+2 +..+ n+1) - 2 = 2.S(n+1) - 2

P = 2.(n+1)(n+2)/2 - 2 = (n+1)(n+2) - 2 = n²+3n


 bài toán chỉ tính đến S16/16 (tức n = 16)
P = 16² + 3.16 = ...