K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

\(3-8x-x^2=-\left(x^2+8x-3\right)=-\left(x^2+2.x.4+4^2-19\right)=-\left(x+4\right)^2+19\)

Vì \(\left(x+4\right)^2\ge0\)

nên \(-\left(x+4\right)^2\le0\)

do đó \(-\left(x+4\right)^2+19\le19\)

Vậy \(Max_{3-8x-x^2}=19\)khi \(x+4=0\Rightarrow x=-4\)

4 tháng 10 2015

a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11

Vì (2x-2)2luôn lớn hơn hoặc bằng 0

=>A>hoặc =0+11 hay a>hoặc =11

vậy GTNN của A là 11 khi x=1

19 tháng 7 2016

A= 5-8x-x2

=-x2-8x+21-16

=21-(x2+8x+16)

=21-(x+4)2\(\ge\)21-0=21

Dấu = khi x=-4

Vậy Amax=21 khi x=-4

B= x2+x+1

\(=x^2+\frac{x}{2}+\frac{x}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)

Dấu = khi x=-1/2

Vậy Bmin=3/4 khi x=-1/2

27 tháng 8 2020

Bài làm:

Ta có: \(E=5x^2+y^2-4xy+8x-6y+3\)

\(E=\left(4x^2-4xy+y^2\right)+\left(12x-6y\right)+9+\left(x^2-4x+4\right)-10\)

\(E=\left(2x-y\right)^2+6\left(2x-y\right)+9+\left(x-2\right)^2-10\)

\(E=\left(2x-y+3\right)^2+\left(x-2\right)^2-10\ge-10\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+3\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=7\end{cases}}\)

Vậy Min(E) = -10 khi x = 2, y = 7

8 tháng 6 2015

A= -x2+6x+2

=-x2+6x-9+11

=-(x2-6x+9)+11

<=>-(x-3)2+11

Vì -(x-3)2\(\le\)0 nên -(x-3)2+11\(\le\)11

Dấu = xảy ra khi x-3=0

                     <=>x=3

Vậy GTLN của A là 11 tại x=3

B= -x4+8x2+10

=-x4+8x2-16+26

=-(x4-8x2+16)+26

=-(x2-4)2+26

Vì -(x2-4)2\(\le\)0 nên -(x2-4)2+26\(\le\)26

Dấu = xảy ra khi x2-4=0

                       <=>x2=4

                    <=>x=2 hoặc x=-2

Vậy GTLN của B là 26 tại x=2;-2

2 tháng 11 2017

\(5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+4^2-4^2-5\right)=-\left[\left(x+4\right)^2-21\right]=-\left(x+4\right)^2+21=21-\left(x+4\right)^2\le21\Rightarrow GTLN=21\)

18 tháng 12 2016

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)

suy ra Amin=-1

18 tháng 12 2016

\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

27 tháng 6 2019

Ta có: \(P=\left[-\left(4x^2-2.2x.y+y^2\right)-6\left(2x-y\right)-9\right]-\left(x^2-4x+4\right)-15\)

\(=-\left[\left(2x-y\right)^2+2.\left(2x-y\right).3+9\right]-\left(x-2\right)^2-15\)

\(=-\left(2x-y+3\right)^2-\left(x-2\right)^2-15\le-15\)

Dấu "=" xảy ra khi x = 2\(\hept{\begin{cases}x=2\\y=2x+3=7\end{cases}}\)

Vậy...