Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 5-8x-x2
=-x2-8x+21-16
=21-(x2+8x+16)
=21-(x+4)2\(\ge\)21-0=21
Dấu = khi x=-4
Vậy Amax=21 khi x=-4
B= x2+x+1
\(=x^2+\frac{x}{2}+\frac{x}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
Dấu = khi x=-1/2
Vậy Bmin=3/4 khi x=-1/2
Bài làm:
Ta có: \(E=5x^2+y^2-4xy+8x-6y+3\)
\(E=\left(4x^2-4xy+y^2\right)+\left(12x-6y\right)+9+\left(x^2-4x+4\right)-10\)
\(E=\left(2x-y\right)^2+6\left(2x-y\right)+9+\left(x-2\right)^2-10\)
\(E=\left(2x-y+3\right)^2+\left(x-2\right)^2-10\ge-10\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+3\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=7\end{cases}}\)
Vậy Min(E) = -10 khi x = 2, y = 7
A= -x2+6x+2
=-x2+6x-9+11
=-(x2-6x+9)+11
<=>-(x-3)2+11
Vì -(x-3)2\(\le\)0 nên -(x-3)2+11\(\le\)11
Dấu = xảy ra khi x-3=0
<=>x=3
Vậy GTLN của A là 11 tại x=3
B= -x4+8x2+10
=-x4+8x2-16+26
=-(x4-8x2+16)+26
=-(x2-4)2+26
Vì -(x2-4)2\(\le\)0 nên -(x2-4)2+26\(\le\)26
Dấu = xảy ra khi x2-4=0
<=>x2=4
<=>x=2 hoặc x=-2
Vậy GTLN của B là 26 tại x=2;-2
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
Bài 1
a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA=-9/8 khi x=-1/4
b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)
Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)
Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0
Vậy minB=1 khi x=y=0
lý luận tương tự bài 1, bài này mình làm tắt
Bài 2:
a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)
\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)
Dấu "=" xảy ra khi x=5/6
b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)
\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)
Dấu "=" xảy ra khi x=y=0
Ta có: \(P=\left[-\left(4x^2-2.2x.y+y^2\right)-6\left(2x-y\right)-9\right]-\left(x^2-4x+4\right)-15\)
\(=-\left[\left(2x-y\right)^2+2.\left(2x-y\right).3+9\right]-\left(x-2\right)^2-15\)
\(=-\left(2x-y+3\right)^2-\left(x-2\right)^2-15\le-15\)
Dấu "=" xảy ra khi x = 2\(\hept{\begin{cases}x=2\\y=2x+3=7\end{cases}}\)
Vậy...
\(3-8x-x^2=-\left(x^2+8x-3\right)=-\left(x^2+2.x.4+4^2-19\right)=-\left(x+4\right)^2+19\)
Vì \(\left(x+4\right)^2\ge0\)
nên \(-\left(x+4\right)^2\le0\)
do đó \(-\left(x+4\right)^2+19\le19\)
Vậy \(Max_{3-8x-x^2}=19\)khi \(x+4=0\Rightarrow x=-4\)