Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương trong phép chia cho 36 là : \(k\left(k\in N\right)\)
Theo đề ra , ta có : \(a=36k+12\left(k\in N\right)\)
Vì : \(36⋮4\Rightarrow36k⋮4\left(k\in N\right)\) ; \(12⋮4\)
\(\Rightarrow36k+24⋮4\left(k\in N\right)\)
Vì : \(36⋮9\Rightarrow36k⋮9\left(k\in N\right)\) ; \(24⋮̸\) 9
\(\Rightarrow36k+24⋮̸\) 9 \(\left(k\in N\right)\)
Vậy : \(a⋮4\) ; \(a⋮̸\) 9
a chia cho 36 dư 12 => a = 36k + 12
Ta có: 36 \(⋮\)4 => 36k \(⋮\)4
12 \(⋮\)4
=> a \(⋮\)4
Ta có: 36 \(⋮\)9 => 36k \(⋮\)9
12 \(⋮̸\)9
=> a \(⋮̸\)9
Gọi q là thương trong phéo chia a cho 12, ta có a = 12q + 8. Vì 12 = 4 . 3 nên 12q = 4 . 3q. Do đó 12q chia hết cho 4; hơn nữa 8 cũng chia hết cho 4. Vậy a chia hết cho 4.
Lập luận tương tự ta đi tới kết luận; a không chia hết cho 6.