Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)
\(\Rightarrow\frac{a}{2}=4\Rightarrow a=4.2=8\left(m\right)\)
\(\frac{b}{4}=4\Rightarrow b=4.4=16\left(m\right)\)
\(\frac{c}{5}=4\Rightarrow c=4.5=20\left(m\right)\)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là 8m, 16m, 20m
Ta có:
S - P = (1 - 1/2 + 1/3 -1/4+ ...+ 1/1007 - 1/1008 + ...+ 1/2013 - 1/2014 + 1/2015) - (1/1008 + 1/1009 + ...+1/2014 + 1/2015)
=1 - 1/2 + 1/3 - 1/4 + ... + 1007 -2/1008 - ... - 2/2014
= 1 - 1/2 + 1/3 - 1/4 + ...+ 1/1007 - 2/1008 - 2/1010 - ...- 2/2012 - 2/2014
= 1 - 1/2 + 1/3 - 1/4 + ....+ 1007 - 1/504 - 1/505 - ...- 1/1006 - 1/1007
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 1/504 + 1/505 + ...+ 1/1005 - 1/1006 + 1/1007 - 1/504 - 1/505 - ...- 1/1006 - 1/1007
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 2/504 - 2/506 - ..- 2/1006
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 1/252 - 1/253 - ...- 1/503
Lại tiếp tục như trên, Lẻ mất, chẵn còn => S - P = 0 => (S-P)2015 = 0
Gọi hai kích thước của hình chữ nhật đó lần lượt là a và b
\(\Rightarrow\frac{a}{3}=\frac{b}{5}\) và a . b = 24
Đặt \(\frac{a}{3}=\frac{b}{5}=k\Rightarrow\hept{\begin{cases}a=3k\\b=5k\end{cases}}\)
\(\Rightarrow a.b=3k.5k=8k=24\)
\(\Rightarrow k=3\Rightarrow\hept{\begin{cases}a=3.4=12\left(m\right)\\b=5.4=20\left(m\right)\end{cases}}\)
Chu vi hình chữ nhật đó là :
( 12 + 20 ) . 2 = 64 ( m )
Đáp số : 64 m
phần còn lại của ba tấm vải lần lượt là ; 1/2 ;2/3 ; 3/4.Qui đồng tử số của ba phân số ta được ;6/12 ;6/9 ;6/8
Gọi ba tấm vải là a; b ;c và ba tấm vải lần lượt tỉ lệ với 12;9;6
ta có a/12 = b/9 =c/8 = (a + b + c )/ (12 +9 + 8 ) = 145 /29 = 5
tấm vải 1 là : a/12 =5 vậy a=60m
tấm vải 2 : b/9 = 5 ,b = 45m
tấm vải 3 : c/8 =5 ,c= 40m
B
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
Với mọi n là số tự nhiên ta luôn có :
1/21 + 1/22 + 1/23 + ... + 1/2n = (2n-1)/2n
Cho nên tổng của bài toán này là (250-1)/250
Gọi BT Trên là A
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
\(A=2A-A=1-\frac{1}{2^{50}}\)