Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>mx+4m-5m+5=2x+2
=>x(m-2)=2+m-5=m-3
Để phương trình có nghiệm âm thì (m-3)/(m-2)<0
=>2<m<3
\(ĐK:x\ne-1\)
\(\dfrac{m+1}{x+1}=m^2+3m+2=\left(m+1\right)\left(m+2\right)\\ \Leftrightarrow x+1=\dfrac{m+1}{\left(m+1\right)\left(m+2\right)}=\dfrac{1}{m+2}\\ \Leftrightarrow x=\dfrac{1}{m+2}-1=\dfrac{-m-1}{m+2}\)
Nghiệm âm \(\Leftrightarrow x< 0\Leftrightarrow\dfrac{-m-1}{m+2}< 0\Leftrightarrow\dfrac{m+1}{m+2}>0\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
Mà \(x\ne-1\Leftrightarrow\dfrac{m+1}{m+2}\ne1\Leftrightarrow m+1\ne m+2\left(\text{luôn đúng}\right)\)
Vậy \(m>-1;m< -2\)
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow2\left(m-1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m-1}\)
Vì \(2>0\)
\(\Rightarrow m-1>0\)
\(\Rightarrow m>1\)
Thay x = 4 vào phương trình, ta được :
\(1-m=2\left(2m+1\right)\left(m-1\right)\)
\(\Leftrightarrow2\left(2m+1\right)\left(m-1\right)+\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+2+1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-1=0\\4m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{-3}{4}\end{cases}}\)
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm