K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A C B H D F E

Bài làm:

a) Trong \(\Delta ABC\)có:

           AD = BD (gt)

           AF = CF  (gt)

\(\Rightarrow\)FD là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)FD // BC và FD = \(\frac{1}{2}\)BC

Mà E là trung điểm của đoạn thẳng BC (gt)

\(\Rightarrow\)FD//CE và FD = CE

\(\Rightarrow\)Tứ giác DECF là hình bình hành

b) Ta có hình bình hành DECF là hình chữ nhật khi \(\widehat{C}\)= 90o

\(\Leftrightarrow AC\perp BC\)

Vậy tam giác ABC vuông tại C thì tứ giác DECF là hình chữ nhật

c) Trong hình bình hành DECF có: DE = CF

Mà CF = AF (gt)

\(\Rightarrow\)DE = CF = AF = 13 cm

Mặt khác AC = AF + CF

\(\Rightarrow\)AC = 13 + 13 = 26 cm

Áp dụng định lí Pytago vào \(\Delta ACH\)vuông tại H ta có:

     AC2 = AH2 + CH2

\(\Rightarrow\)CH2 = AC2 - AH2

Thay CH2 = 262 - 102

\(\Rightarrow\)CH2 = 676 - 100

\(\Rightarrow\)CH2 = 576

\(\Rightarrow\)CH = \(\sqrt{576}\)= 24

Vậy diện tích tam giác ACH là : \(\frac{1}{2}.10.24=120\left(cm^2\right)\)

d) Hình bình hành DECF có DF//CE

\(\Rightarrow\)DF//HE

\(\Rightarrow\)DFHE là hình thang      (1)

Trong \(\Delta ABC\)có:

   AD = BD (gt)

   BE = CE (gt)

\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)DE = \(\frac{1}{2}\)AC      (2)

Trong \(\Delta ACH\)vuông tại H có: AF = CF (gt)

\(\Rightarrow\)HF là đường trung tuyến ứng với cạnh huyền AC

\(\Rightarrow\)HF = \(\frac{1}{2}\)AC    (3)

Từ (2) và (3)\(\Rightarrow\)DE = HF       (4)

Từ (1) và (4)\(\Rightarrow\)DFHE là hình thang cân

Bài 2:

a: Xet ΔABC có AD/AB=AF/AC

nen DF//BC và DF=1/2BC

=>BDFC là hình thang

mà góc B=góc C

nên BDFC là hình thang cân

b Xet ΔABC có

CE/CB=CF/CA

nên EF//AB và EF=AB/2

=>EF//AD và EF=AD
=>ADEF là hình bình hành

mà AD=AF

nen ADEF là hình thoi

c: Để ADEF là hình vuông thì góc BAC=90 độ

20 tháng 12 2015

a,Ta có: FA=FC=AC:2(gt)

          EC=EB=BC:2(gt)

=>FE là đường TB của tam giác ABC => EF//AD

CMTT: DE//FA

=> ADEF là hình bình hành

b,ADEF LÀ HÌNH thoi => AF = AD

=> AC=AB =>ABC là tam giác cân

Vậy đấy dễ mà tick cko mk nha!!!

3 tháng 11 2021

a.

Xét tam giác ABC có

AF = FC

BE = EC

=>FE là đường trung bình của tam giác ABC ( tính chất )

=> FE // AB mà D thuộc AB nên FE // AD (1)

Xét tiếp tam giác ABC có

DB = AD

BE = EC

=> DE là đường trung bình của tam giác ABC ( tính chất )

=> DE // AC mà F thuộc AC nên DE // AF (2)

Từ (1) và (2) => Tứ Giác ADEF là hình bình hành ( dấu hiệu ) ( đpcm)

b.

Để Tứ Giác ADEF là hình chữ nhật thì góc DAE = 90 độ ( hay góc BAC = 90 độ ) DE và EF phải lần lượt là trung trực của AB và AC, DE và EF phải giao nhau tại trung điểm của BC ( là điểm E )

27 tháng 12 2021

a: Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của BC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//AF và DE=AF

hay ADEF là hình bình hành

7 tháng 1 2022

Answer:

Mình chỉ biết làm a, b còn c, d mình không biết. Bạn thông cảm ạ.

undefineda. Có: DM vuông góc với AC; DN vuông góc với BC; AC vuông góc với BC

=> CMDN là hình chữ nhật

b. Xét tam giác abc VUÔNG TẠI a:

D là trung điểm AB

=> CD là đường trung tuyến

=> CD = DB = AD

=> Tam giác CDB cân tại D

Mà DN vuông góc với BC

=> DN là đường cao và cũng là trung tuyến

=> CN = NB

Xét tứ giác DCEB:

CN = NB

DN = NE

Mà DE vuông góc BC

=> Tứ giác DCEB là hình thoi.

DD
8 tháng 1 2022

c) Xét tam giác \(ABC\)vuông tại \(C\)có: 

\(AB^2=AC^2+BC^2\)(định lí Pythagore) 

\(\Leftrightarrow AC^2=AB^2-BC^2=10^2-6^2=64=8^2\)

suy ra \(AC=8\left(cm\right)\).

 \(DM\)vuông góc với \(AC\)mà \(AB\perp AC\)suy  ra \(DM//AB\)

mà ta lại có \(D\)là trung điểm của \(AB\)

nên \(DM\)là đường trung bình của tam giác \(ABC\).

Suy ra \(DM=\frac{1}{2}BC=\frac{1}{2}.6=3\left(cm\right)\)

Tương tự ta cũng suy ra \(DN=\frac{1}{2}AC=4\left(cm\right)\).

\(S_{CMDN}=DM.DN=3.4=12\left(cm^2\right)\).

d) 

Có \(CDBE\)là hình thoi nên để \(CDBE\)là hình vuông thì \(CD\perp BE\).

Xét tam giác \(ABC\)có \(D\)là trung điểm \(AB\)mà \(CD\perp BE\)nên tam giác \(ABC\)cân tại \(C\).

Vậy tam giác \(ABC\)vuông cân tại \(C\).