Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(6.|3x-12|\ge0\forall x\)
\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)
Hay \(A\ge23\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow x=4\)
Vậy Min A=23 \(\Leftrightarrow x=4\)
Bài 2:
Ta có: \(5.|14-7x|\ge0\forall x\)
\(\Rightarrow-5.|14-7x|\le0\forall x\)
\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)
Hay \(B\le2019\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow x=2\)
Vậy Max B=2019 \(\Leftrightarrow x=2\)
Bài làm
\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=\frac{84}{12}+\left(\frac{7}{12}-\frac{6}{12}+\frac{36}{12}\right)-\left(\frac{1}{12}+\frac{60}{12}\right)\)
\(=\frac{84}{12}+\frac{37}{12}-\frac{61}{12}\)
\(=\frac{60}{12}\)
\(=5\)
# Chúc bạn học tốt #
Với giá trị nguyên nào của x thì các biểu thức sau có giá trị lớn nhất A= 12+12/5-x; B = 37-3x/10-x.
A = 12 + \(\frac{12}{x-5}\)
=> Để A có giá trị lớn nhất thì \(\frac{12}{x-5}\)phải có giá trị lớn nhất => x -5 phải có giá trị nhỏ nhất và có cùng dấu với 12(1)
Mà x là số nguyên => x - 5 cũng là 1 số nguyên (2)
Từ (1) và (2) suy ra: (x-5) phải là ước nguyên dương nhỏ nhất của 12 => x - 5 = 1 <=> x = 6
\(B=\frac{37-3x}{10-x}\)
Biến đổi \(B=\frac{37-3x}{10-x}=\frac{3\left(10-x\right)+7}{10-x}=3+\frac{7}{10-x}\)
Xét x > 10 thì B < 0 (1)
Xét x < 10 thì mẫu 10 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên B lớn nhất \(\Leftrightarrow\)mẫu 10 - x nhỏ nhất \(\Leftrightarrow10-x=1\Leftrightarrow x=9\).Khi đó A = 10 (2)
So sánh (1) và (2) , ta thấy GTLN của A là 10 khi và chỉ khi x = 9