K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

\(y=\sqrt[200]{8}\)

Spam à?

12 tháng 10 2017

ko phải spam đâu bn

29 tháng 7 2016

http://olm.vn/hoi-dap/question/103082.html

19 tháng 6 2019

Ta có: (x - 2015)2 \(\ge\)\(\forall\)x => 8(x - 2015)2 \(\ge\)\(\forall\)x

                                               => 25 - y2 \(\ge\)

                                            <=> y2 \(\le\) 25

                                           <=> |y| \(\le\)5

Do y \(\in\)Z => 0 \(\le\)y < 5

+) Với y = 0 => 25 - 02 = 8(x - 2015)2

=> 25 = 8(x - 2015)2

=> (x - 2015)2 = 25 : 8 (ko thõa mãn vì (x - 2015)2 là số chính phương còn 25 : 8 ko phải là số chính phương)

+)Với y = 1 => 25 - 12 = 8.(x - 2015)2

=> 24 = 8.(x - 2015)2

=> (x - 2015)2 = 24 : 8 = 3 (ko thõa mãn)

+) Với y = 2 => 25 - 22 = 8(x - 2015)2

=> 21 = 8(x - 2015)2

=> (x - 2015)2 = 21 : 8 (ko thõa mãn)

+) Với y = 3 => 25 - 32 = 8(x - 2015)2

=> 16 = 8(x - 2015)2

=> (x - 2015)2 = 16 : 8 = 2 (ko thõa mãn)

+) Với y = 4 => 25 - 42 = 8(x - 2015)2

=> 9 = 8(x - 2015)2

=> (x - 2015)2 = 9 : 8 (ko thõa mãn)

+) Với y = 5 => 25 - 52 = 8(x - 2015)2

=> 0 = 8(x - 2015)2

=> (x - 2015)2 = 0

=> x - 2015 = 0

=> x = 2015

Vậy {x;y} thõa mãn là {2015; 5}

24 tháng 6 2016

(x^2+1)(x-1)(x+3)>0

Vì x^2+1>0 với mọi x

nên: (x-1)(x+3)>0

Trường hợp 1:

x-1<0, x+3 <0

Vì x+3 > x-1 nên x+3<0 suy ra x<-3

Trường hợp 2:

x-1>0, x+3>0

Vì x-1<x+3 nên x-1 >0 suy ra x>1

Vậy x<-3 hoặc x>1

24 tháng 6 2016

Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương

TH1: Có 2 số âm, 1 số dương

Trước hết ta có \(x+3>x-1\)

\(x^2+1>x-1\)

Vì vậy \(x-1< 0\)

\(x^2+1>0\) nên \(x+3< 0\)

\(\Rightarrow x< -3\left(< 1\right)\)

TH2: Cả 3 số đều dương

Xét số bé nhất lớn hơn 0:

\(x-1>0\Rightarrow x>1\)

Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)

27 tháng 3 2020

\(2x^3y^6-4xy+5xyz+xy+8x^3y^6-xyz\)

\(=\left(2x^3y^6+8x^3y^6\right)-\left(4xy-xy\right)+\left(5xyz-xyz\right)\)

\(=10x^3y^6-3xy+4xyz\)

Bậc của đa thức là 9

17 tháng 1 2018

 Ta có: \(\hept{\begin{cases}\left|x^2-1\right|+2\ge2\\\frac{6}{\left(y+1\right)^2+3}\le\frac{6}{3}=2\end{cases}}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=\pm1\\y=-1\end{cases}}\)

24 tháng 2 2019

Xét 3 TH

*TH1: \(y+2< 0,2x+3< 0\)

\(\Leftrightarrow-2x-3-y-2=8\Leftrightarrow2x+y=3\)(luôn đúng)

vậy có nghiệm với mọi x,y thỏa mãn$y+2<0,2x+3<0$

*TH2:\(y+2\ge0,2x+3< 0\)

\(\Leftrightarrow-2x-3+y+2=8\Leftrightarrow y-2x=9\)

thay 2x=3-y ,ta có

y-3+y=9 nên 2y=12 nên y=6(t/m)

suy ra x=-3/2(loại)

loại

*TH3: \(y+2\ge0,2x+3\ge0\)

\(2x+3+y+2=8\Rightarrow2x+y=3\)(luôn đúng)

vậy pt có nghiệm với mọi $y+2\ge 0,2x+3\ge 0$ thỏa mãn 2x+y=8

23 tháng 4 2017

Bạn hãy tách x^2-x+2 . và đưa nó về hàng đẳng thức . từ đó đối chiếu thì ta thấy được nó vô nghiệm

23 tháng 4 2017

\(x^2-x+2=x^2-\frac{1}{2}\cdot x\cdot2+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

vậy x2-x+2 không có nghiệm