Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Chichi1311
a) Xét 2 tam giác AMB và AMC có:
AM chung
MB=MC
AB=AC
Suy ra: ΔAMB=ΔAMC (c-c-c)
b) Xét 2 tam giác vuông ABH và ACK có:
AB=AC
ˆKAHKAH^ chung
Suy ra: ΔABH=ΔACK ( cạnh huyền- góc nhọn)
⇒BH=CK ( 2 cạnh tương ứng)
c) ΔABH=ΔACK ⇒ AK=AH
Lại có: AB=AC nên:
AKAB=AKAB= AHACAHAC
⇒ HK//BC
a,
Vì \(AM\)là tia phân giác của \(\widehat{A}\) nên \(\widehat{CAM}=\widehat{BAM}\)
\(\Delta ABC\) CÂN TẠI A (gt) nên \(AB=AC\)
\(\widehat{B}=\widehat{C}\)
\(\Delta AMB=\Delta AMC\)( g.c.g) vì \(\widehat{BAM}=\widehat{CAM}\)(Chứng minh trên)
\(AB=AC\)(cmt)
\(\widehat{B}=\widehat{C}\)(cmt)
b,
VÌ \(BH\perp AC\left(gt\right)\)
\(CK\perp AB\left(gt\right)\)
=> \(\widehat{H}=\widehat{K}=90^0\)
\(Xét\)\(\Delta ABH\)và \(\Delta ACK\)có :
\(\widehat{H}=\widehat{K}=90^O\)
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
=> \(\Delta ABH=\Delta ACK\left(g.c.g\right)\)
=> \(BH=CK\)(hai cạnh tương ứng)
Vậy BH=CK
a, xét tam giác DAB và tam giác DAE có : DA chung
góc BAD = góc EAD do AD là phân giác của góc BAC (gt)
góc ABC = góc DEA = 90 do ...
=> tam giác DAB = tam giác DAE (ch - gn)
=> AB = AE( đn)
b, gọi AD cắt BE tại O
xét tam giác OBA và tam giác OEA có : AO chung
góc BAD = góc EAD (câu a)
AB = AE (câu a)
=> tam giác OBA = tam igacs OEA (c - g - c)
=> góc BOA = góc EOA
mà góc BOA + góc EOA = 180 do kề bù
=> góc BOA = 90
=> AD _|_ BE (đn)
c, có góc ABC = 90
=> tam giác DBA vuông tại B (đn)
=> DA > AB (1)
AD là phân giác của góc BAC (gt)
=> góc DAC = 1/2 góc BAC mà góc BAC = 60 (GT)
=> góc DAC = 1/2.60 = 30
xét tam giác ABC vuông tại B (gt) => góc C + góc BAC = 90 (đl) mà góc BAC = 60 (gt) => góc C = 30
=> góc DAC = góc C
=> tam giác DAC cân tại D (đl)
=> DC = DA (đn) (2)
(1)(2) => DC > AB
a, xét 2 tam giác vuông BAD và EAD có:
AD cạnh chung
\(\widehat{BAD=\widehat{EAD}}\)(gt)
=> \(\Delta BAD=\Delta EAD\)(CH-GN)
=> AB=AE(2 cạnh tương ứng)
b, gọi O là giao điểm của AD và BE
xét t.giác OAB và t.giác OAE có:
OA cạnh chung
\(\widehat{OAB=\widehat{OAE}}\)(gt)
AB=AE(câu a)
=> t.giác OAB=t.giác OAE(c.g.c)
=> \(\widehat{AOB=\widehat{AOE}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{AOE}}\)=90 độ
=> AD\(\perp\)BE
c, xét t.giác ABC có: \(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180 độ
=> 60 độ + 90 độ + \(\widehat{C}\)=180 độ
=> \(\widehat{C}\)=30 độ(1)
mà AD là phân giác của \(\widehat{BAC}\)=> \(\widehat{CAD}\)=30 độ (2)
từ (1) và (2) suy ra tam giác ADC cân tại D
=> AD=DC(3)
trong tam giác vuông ADB có: AD>AB (cạnh huyền>cạnh góc vuông)(4)
từ (3) và (4) suy ra DC>AB
A B C D E O
a) xet tam giac abd va tam giac aed co
bad=ead
ad la canh chung
abd=aed=900
=>tam giac abd= tam giac aed
=>bd=ed
Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath
A B C H D E I 1 2 1 2 5 5 8
a) Xét 2 tam giác vuông AHB và tam giác AHC có:
AB = AC (gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC (cạnh huyền - cạnh góc vuông)
=>HB = HC (2 cạnh tương ứng)
=> góc A1= góc A2 (2 góc tương ứng)
b) Ta có : BC = HB + HC
mà HB = HC (cmt)
BC = 8 (cm)
=> HB = HC = BC/2 = 8/2= 4 (cm)
Xét tam giác AHB vuông tại H áp dugj định lí Pitago có:
AB^2 = AH^2 + HB^2
hay 5^2 = AH^2 + 4^2
=> AH = 5^2 - 4^2 =25 - 16= 9
=> AH = căn bậc 2 của 9 = 3 (cm)
c)Xét 2 tam giác vuông BHD và tam giác CHE có:
HB = HC (cmt)
Góc B = góc C ( vì tam giác ABC cân tại A)
=> tam giác BHD = tam giác CHE (cạnh huyền - góc nhọn)
=> BD= CE (2 cạnh tương ứng)
Xét 2 tam giác ADI và tam giác AEI có:
góc A1 = góc A2 (cmt)
AI là cạnh chung
AD =AE ( vì AB = AC; BD = CE)
=> tam giác ADI = tam giác AEI (c-g-c)
=> góc I1 = góc I2 (2 góc tương ứng)
mà góc I1 + góc I2 = 180 độ
=> góc I1 = góc I2 = 180/ 2= 90 (độ)
=> AI vuông góc với DE
=> AH cũng vuông góc với DE
mặt khác: AH lại vuông góc với BC
=> DE // BC (đpcm)
- Dùng êke hoặc thước để kẻ.
Đề bài là vẽ thôi à bn