K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Giả sử phân số \(\dfrac{3n+2}{7n+1}\) chưa tối giản

Gọi \(d\)\(UCLN\left(3n+2;7n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\7n+1⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}21n+14⋮d\\21n+3⋮d\end{matrix}\right.\)

\(\Rightarrow11⋮d\) \(\Rightarrow d\in U\left(11\right)\)

\(U\left(11\right)=\left\{\pm1;\pm11\right\}\)

Vậy với các gt trên thì p/s tối giản

10 tháng 2 2018

Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!

a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )

Ta có: 2n + 3 chia hết cho d

=> 2 ( 2n + 3 ) chia hết cho d

=> 4n + 6 chia hết cho d

Mà: 4n + 1 chia hết cho d

=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d

=> 5 chia hết cho d

=> d thuộc Ư ( 5 )

Giả sử phân số không tối giản:

=> 2n + 3 chia hết cho 5

=> 2n + 3 + 5 chia hết cho 5

=> 2n + 8 chia hết cho 5

=> 2 ( n + 4 ) chia hết cho 5

Vì ƯCLN ( 2; 5 ) = 1

=> n + 4 chia hết cho 5

=> n + 4 = 5k ( k thuộc N* )

=> n = 5k - 4

Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

10 tháng 2 2018

b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 ) 

Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )

          7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3  chia hết cho d ( 2 )

Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d

=> ( 1 ) - ( 2 ) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư ( 11 )

Giả sử phân số không tối giản:

=> 7n + 1 chia hết cho 11

=> 7n + 1+ 55 chia hết cho 11

=> 7n + 56 chia hết cho 11

=> 7 ( n + 8 ) chia hết cho 11

Vì ƯCLN ( 7; 11 ) = 1

=> n + 8 chia hết cho 11

=> n + 8 = 11k ( k thuộc N* )

=> n = 11k - 8

Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^

15 tháng 8 2017

Giả sử phân số \(\dfrac{2n+3}{4n+1}\) chưa tối giản

\(\Leftrightarrow2n+3;4n+1\) có ước chung là số nguyên tố

Gọi số nguyên tố \(d=ƯCLN\left(2n+3;4n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow5⋮d\)

\(\Leftrightarrow d\in\left\{1;5\right\}\)

+) \(d=5\Leftrightarrow2n+3⋮5\)

\(\Leftrightarrow2n+3+5⋮5\)

\(\Leftrightarrow2n+8⋮5\)

\(\Leftrightarrow2\left(n+4\right)⋮5\)

\(ƯCLN\left(2;5\right)=1\)

\(\Leftrightarrow n+4⋮5\)

\(\Leftrightarrow n=5k-4\left(k\in N\right)\)

Vậy \(n=5k+1\) thì phân số \(\dfrac{2n+3}{4n+1}\) tối giản

b, tương tự

7 tháng 9 2019

Bây giờ để tìm các giá trị của n để phân số đầu bài cho tối giản thì mình đi tìm các giá trị của n sẽ làm cho phân số đó nguyên

Giả sử \(\frac{n-1}{7n+4}\)nguyên thì \(\frac{7n-7}{7n+4}\)cũng phải nguyên

Do đó \(1-\frac{11}{7n+4}\)nguyên

\(\Rightarrow\)\(\frac{11}{7n+4}\)nguyên\(\Rightarrow7n+4\)là ước của 11\(\Rightarrow7n+4=\left\{-11;-1;1;11\right\}\)

Từ đây ta chọn ra \(n=\left\{1\right\}\)

Vậy n=1 thì \(\frac{n-1}{7n+4}\)là số nguyên

Như đã nói ở trên các giá trị tự nhiên của n thỏa mãn đề bài là các số tự nhiên khác 1

P/s Cách giải trên mình không biết có đúng không vì chúng chỉ là suy ra chớ không phải tương đương, nên có thể sẽ còn thiếu giá trị

7 tháng 3 2018

@Ngô Tấn Đạt

9 tháng 9 2020

Giúp mình với