Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: góc OBC = BOx = 50 độ
Mà 2 góc này so le trong
=> Ox//BC (đpcm)
Vậy Ox// BC
Tự vẽ hình nhoa!!! Mk chỉ làm đc phần a thui
Đêm qua em hỏi, chị lại ko nghĩ là em :V
Bài 1:
A D C B M N 1 1 1 2
*Hình ảnh chỉ mang tính chất minh họa
a) Ta có: \(xy\)\(//BD\)
Mà \(BD\)là phân giác \(\widehat{ABC}\) \(\Rightarrow BD\)cắt \(BC\)
\(\Rightarrow xy\)cắt \(BC\) ( gọi giao điểm là M )
b) Ta có: \(\widehat{A_1}=\widehat{B_1}\left(slt\right)\) mà \(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{B_2}\left(1\right)\)
Mặt khác \(\widehat{M_1}=\widehat{B_2}\left(đvi\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\widehat{A_1}=\widehat{M_1}\)
c) Xét \(\Delta BAM\)có \(\widehat{A_1}=\widehat{M_1}\)(câu b)
\(\Rightarrow\Delta BAM\)cân tại \(B\)
\(\Delta BAM\)cân tại \(B\) có \(BN\) là đường phân giác
=> \(BN\)đồng thời là đường cao của \(\Delta BAM\)
=> Đpcm
Bài 2:
x y B 150 K H I
*Hình ảnh chỉ mang tính chất minh họa (Nhinf cais anhr thaays gowms quas)
a) Ta cos: \(AH\) vuông góc \(By\)\(;\) \(CK\)vuông góc \(Bx\)
Mà Bx tạo với tia By một góc 150 độ => Bx cắt By tại B
=> AH cắt CK ( tại giao điểm I )
b) Ta có: \(\widehat{ABC}=150^o\Rightarrow\widehat{ABH}=30^o\)
\(\Rightarrow\widehat{BAH}=90-\widehat{ABH}=60^o\)
\(\Rightarrow\widehat{AIC}=\widehat{AIK}=90-\widehat{BAH}=30^o\)
@@ Cách khác
Ta có: \(\widehat{HBK}=\widehat{ABC}=150^o\left(đđ\right)\)
Xét tứ giác BHIK có:
\(\widehat{AIC}=360-\widehat{IHB}-\widehat{IKB}-\widehat{HBK}\) (Nếu chưa học cái này thì chứng minh bằng cách chia tứ giác thành 2 tam giác)
\(\Leftrightarrow\widehat{AIC}=360-90-90-150=30^o\)
B1 :a)BC ko song song với BD vì chung B
->BC ko sog sog xy (xy//BD) nên cắt BC tại M
b)
c)NBA+ANB+BNA=180^o
NMB+MBN+BNM=180^o
AMB=MAB; B1=B2 (BN pg ABM)
Nen N1=N2;N1+N2=180^o ->ĐPCM
mỏi quá r` mai nghĩ tiếp mà vẽ hộ tui cái hình bài 2 vs
a) Ta có: OA ⊥ OM (GT)
\(\Rightarrow\widehat{AOM}=90^0\)
Ta có: OB ⊥ ON (GT)
\(\Rightarrow\widehat{BON}=90^0\)
b)
Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)
=> Góc AON = Góc BOM
A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB=AC (gt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)
b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)
=>BH = CK (2 cạnh tương ứng)
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
mà góc ABD=60 độ
nên ΔBAD đều
b: Xét ΔIBC cógóc IBC=góc ICB
nên ΔIBC cân tại I
c: Xét ΔBAI và ΔBDI có
BA=BD
góc ABI=góc DBI
BI chung
Do đó: ΔBAI=ΔBDI
Suy ra: góc BDI=90 độ
=>DI vuông góc với BC
Ta có: ΔIBC cân tại I
mà ID là đường cao
nên D là trung điểm của BC
d: \(BC=AB:\sin C=12\left(cm\right)\)
\(AC=\sqrt{12^2-6^2}=6\sqrt{3}\left(cm\right)\)
a: Ta có: O là tâm đường tròn ngoại tiếp ΔABC
nên OA=OB=OC
Ta có: ΔBAC vuông tại A
nên A nằm trên đường tròn đường kính BC
=>O thuộc BC
b: Sửa đề: \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)
Xét (O) có
góc BCA là góc nội tiếp chắn cung BA
góc BDA là góc nội tiếp chắn cung BA
Do đó: \(\widehat{BCA}=\widehat{BDA}\left(1\right)\)
Xét ΔOAC có OA=OC
nên ΔOAC cân tại O
=>\(\widehat{OAC}=\widehat{OCA}\)
=>\(\widehat{AOB}=2\cdot\widehat{BCA}\)(2)
Từ (1) và (2) suy ra \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)
c: Xét (O) có
góc AOD là góc ở tâm chắn cung AD
góc ACD là góc nội tiếp chắn cung AD
Do đó: \(\widehat{AOD}=2\cdot\widehat{ACD}\)
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
DO đó: ΔABH=ΔACH
Suy ra: HB=HC
hay H làtrung điểm của BC
b: Xét tứ giác ACBD có
M là trung điểm của AB
M là trung điểm của CD
Do đo; ACBD là hình bình hành
Suy ra: AD//BC
Tam giác NAC vuông tại N có:
NAC + NCA = 900
NAC = 900 - NCA
Ta có:
MAB + BAC + CAN = MAN
MAB + 900 + 900 - NCA = 1800
MAB = 1800 - 900 - 900 + NCA
MAB = NCA
Xét tam giác MAB vuông tại M và tam giác NCA vuông tại N có:
AB = AC (gt)
MAB = NCA (chứng minh trên)
=> Tam giác MAB = Tam giác NCA (cạnh huyền - góc nhọn)
=> MA = NC (2 cạnh tương ứng)
AN = BM (2 cạnh tương ứng)
=> MA + AN = NC + BM
hay MN = NC + BM
Tam giác ABC vuông tại A
mà AB = AC (gt)
=> Tam giác ABC vuông cân tại A
=> ABC = ACB = 450
Sửa lại :
Trên tia đối của tia Ma lấy N ; trên tia đối của tia Nb lấy C.
Vẽ Ox // a (1). Ta có :
$\widehat{OMB}=\widehat{MOx}=55^o$ (so le trong)
Mà $\widehat{MOx}+\widehat{xON}=\widehat{MON}=90^o$
$=>55^o+\widehat{xON}=90^o$
$=>\widehat{xON}=35^o$
$=>\widehat{xON}=\widehat{ONC}=35^o$
Mà hai góc này nằm ở vị trí so le trong
=> Ox // b (2)
Từ (1)(2) => a // b.
Trên tia đối của tia Ma lấy B ; trên tia đối của tia Nb lấy C.
Vẽ Ox // a (1). Ta có :
$\widehat{OMB}=\widehat{MOx}=55^o$ (so le trong)
Mà $widehat{MOx}+\widehat{xOn}=\widehat{MON}=90^o$
$=>\55^o+\widehat{xOn}=90^o$
$=>\widehat{xOn}=35^o$
$=>\widehat{xOn}=\widehat{ONC}=35^o$
Mà hai góc này nằm ở vị trí so le trong
=> Ox // b (2)
Từ (1)(2) => a // b.